OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 8 — Aug. 1, 2009
  • pp: 1550–1557

Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness

Alireza Hassani and Maksim Skorobogatiy  »View Author Affiliations

JOSA B, Vol. 26, Issue 8, pp. 1550-1557 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (480 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The application of metallized photonic crystal fibers in surface plasmon resonance sensors of biolayer thickness is demonstrated. By the judicious design of photonic crystal fibers, the effective refractive index of the fundamental core mode can be tuned to enable efficient phase matching with a plasmon anywhere from the visible to near IR. Among other advantages of the presented sensors we find high sensitivity in the visible and near-IR spectral regions, as well as high coupling efficiency from an external Gaussian beam. Based on the numerical simulations, we present designs using various types of photonic crystal fibers, including holey fibers with and without defect, as well as honeycomb photonic crystal fibers. We find that in addition to the fundamental plasmonic excitation, higher order plasmonic modes can also be excited. In principle, using several plasmonic excitations at the same time can enhance sensor detection limit. Both amplitude and spectral-based methodologies for the detection of changes in the biolayer thickness are discussed. Sensor resolutions of the biolayer thickness as high as 0.039–0.044 nm are demonstrated in the whole 600–920 nm region. Finally, we perform analysis of the effect of imperfections in the metal layer geometry on the sensor sensitivity.

© 2009 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Integrated Optics

Original Manuscript: January 21, 2009
Revised Manuscript: May 21, 2009
Manuscript Accepted: May 26, 2009
Published: July 8, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Alireza Hassani and Maksim Skorobogatiy, "Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness," J. Opt. Soc. Am. B 26, 1550-1557 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. M. Agranovich and D. L. Mills, Surface Polaritons-Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).
  2. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2140 (1968).
  3. B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299-304 (1983). [CrossRef]
  4. J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212-216 (1996). [CrossRef]
  5. L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24, 1469-1470 (1988). [CrossRef]
  6. A. V. Kabashin and P. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5-8 (1998). [CrossRef]
  7. A. N. Grigorenko, P. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917-3919 (1999). [CrossRef]
  8. P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 541-566 (1997). [CrossRef] [PubMed]
  9. C. P. Lavers and J. S. Wilkinson, “A waveguide-coupled surface-plasmon sensor for an aqueous environment,” Sens. Actuators B 22, 475-481 (1994). [CrossRef]
  10. R. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B 29, 261-267 (1995). [CrossRef]
  11. M. N. Weiss, R. Srivastava, and H. Grogner, “Experimental investigation of a surface plasmon-based integrated optic humidity sensor,” Electron. Lett. 32, 842-843 (1996). [CrossRef]
  12. J. Homola, J. Ctyroky, M. Skalky, J. Hradiliva, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuators B 39, 286-290 (1997). [CrossRef]
  13. J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8-12 (2001). [CrossRef]
  14. A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,” Sens. Actuators B 97, 114-121 (2004). [CrossRef]
  15. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118-1129 (2007). [CrossRef]
  16. M. Skorobogatiy and A. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518 (2006). [CrossRef]
  17. M. Skorobogatiy and A. Kabashin, “Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide,” Opt. Express 14, 8419-8424 (2006). [CrossRef] [PubMed]
  18. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14, 11616-11621 (2006). [CrossRef] [PubMed]
  19. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B 24, 1423-1429 (2007). [CrossRef]
  20. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413-11426 (2007). [CrossRef] [PubMed]
  21. A. Hassani, B. Gauvreau, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for applications in the visible and near-IR,” Electromagnetics 28, 198-213 (2008). [CrossRef]
  22. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Surface plasmon resonance-like fiber-based sensor at terahertz frequencies,” J. Opt. Soc. Am. B 25, 1771-1775 (2008). [CrossRef]
  23. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15, 16270-16278 (2007). [CrossRef] [PubMed]
  24. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427-8432 (2008). [CrossRef] [PubMed]
  25. P. J. A. Sazio, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583-1586 (2006). [CrossRef] [PubMed]
  26. X. H. Yang and L. L. Wang, “Silver nanocrystals modified microstructured polymer optical fibers for chemical and optical sensing,” Opt. Commun. 280, 368-373 (2007). [CrossRef]
  27. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Optical fiber hybrid-surface plasmon polaritons,” Appl. Phys. Lett. 93, 111102 (2008). [CrossRef]
  28. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008). [CrossRef]
  29. K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode method,” Anal. Chem. 74, 6323-6329 (2002). [CrossRef]
  30. S. J. Al-Bader and M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10, 83-88 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited