OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 8 — Aug. 1, 2009
  • pp: 1627–1634

Noncollinear optical parametric amplifier based femtosecond time-resolved transient fluorescence spectra: characterization and correction

Hailong Chen, Yuxiang Weng, and Jingyuan Zhang  »View Author Affiliations

JOSA B, Vol. 26, Issue 8, pp. 1627-1634 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (670 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectral distortion frequently occurs in a recently developed femtosecond time-resolved fluorescence spectroscopy based on noncollinear optical parametric amplification, which would limit its applications if it is not treated appropriately. We report the mechanism for broadening and distortion of the amplified spectrum, and it was found that the amplified fluorescence spectral width and the corresponding pulse duration were limited by the uncertainty principle. We demonstrated that the nonuniform gain curve of nonlinear optical crystal in the wide spectral region is the main cause leading to the distorted spectrum. Theoretical analysis shows that by carefully adjusting the experimental parameters, such as propagation and noncollinear angles, the spectral fidelity can be achieved in a broad region. Moreover, we also proposed a method for retrieving the genuine spectrum from the distorted amplified spectrum by experimentally measuring the gain curve encoded in the spectrum of the parametric superfluorescence, which is collected during propagation at noncollinear angles the same as those for amplified fluorescence.

© 2009 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:

Original Manuscript: April 10, 2009
Revised Manuscript: June 26, 2009
Manuscript Accepted: June 26, 2009
Published: July 27, 2009

Hailong Chen, Yuxiang Weng, and Jingyuan Zhang, "Noncollinear optical parametric amplifier based femtosecond time-resolved transient fluorescence spectra: characterization and correction," J. Opt. Soc. Am. B 26, 1627-1634 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. R. Ware and A. A. Lamola, Creation and Detection of the Excited State (Marcel Dekker, 1971).
  2. D. J. S. Birch and R. E. Imhof, “Time-domain fluorescence spectroscopy using time-correlated single-photon counting,” in Topics in Fluorescence Spectroscopy,Vol. 1, J.R.Lakowicz, ed. (Plenum Press, 1991) pp. 1-95.
  3. H. Szmacinski and J. R. Lakowicz, “Fluorescence lifetime-based sensing and imaging,” Sens. Actuators B 29, 16-24 (1995). [CrossRef]
  4. B. Gobets, J. T. M. Kennis, J. A. Ihalainen, M. Brazzoli, R. Croce, I. H. M. van Stokkum, R. Bassi, J. P. Dekker, H. van Amerongen, and G. R. Fleming, “Excitation energy transfer in dimeric light harvesting complex I: a combined streak-camera/fluorescence upconversion study,” J. Phys. Chem. B 105, 10132-10139 (2001). [CrossRef]
  5. I. H. M. van Stokkum, B. Gobets, T. Gensch, F. van Mourik, K. J. Hellingwerf, R. van Grondelle, and J. T. M. Kennis, “(Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a synchroscan streak camera system,” Photochem. Photobiol. 82, 380-388 (2006). [CrossRef] [PubMed]
  6. R. V. Krishnan, E. Biener, J. H. Zhang, R. Heckel, and B. Herman, “Probing subtle fluorescence dynamics in cellular proteins by streak camera based fluorescence lifetime imaging microscopy,” Appl. Phys. Lett. 83, 4658-4660 (2003). [CrossRef]
  7. T. C. Damen and J. Shah, “Femtosecond luminescence spectroscopy with 60 fs compressed pulses,” Appl. Phys. Lett. 52, 1291-1293 (1988). [CrossRef]
  8. L. Zhao, J. L. P. Lustres, V. Farztdinov, and N. P. Ernsting, “Femtosecond fluorescence spectroscopy by upconversion with tilted gate pulses,” Phys. Chem. Chem. Phys. 7, 1716-1725 (2005). [PubMed]
  9. S. Arzhantsev and M. Maroncelli, “Design and characterization of a femtosecond fluorescence spectrometer based on optical Kerr gating,” Appl. Spectrosc. 59, 206-220 (2005). [CrossRef] [PubMed]
  10. H. Mahr and M. D. Hirsch, “An optical up-conversion light gate with picosecond resolution,” Opt. Commun. 13, 96-99 (1975). [CrossRef]
  11. M. P. A. Branderhorst, P. Wasylczyk, and I. A. Walmsley, “Simultaneous time and frequency gating of weak molecular fluorescence in a thick nonlinear crystal,” Appl. Phys. Lett. 88, 061109 (2006). [CrossRef]
  12. C. Ma, W. M. Kwok, W. S. Chan, P. Zuo, J. T. W. Kan, P. H. Toy, and D. L. Phillips, “Ultrafast time-resolved study of photophysical processes involved in the photodeprotection of p-hydroxyphenacyl caged phototrigger compounds,” J. Am. Chem. Soc. 127, 1463-1472 (2005). [CrossRef] [PubMed]
  13. J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62, 10083-10087 (2000). [CrossRef]
  14. X. F. Han, X. H. Chen, Y. X. Weng, and J. Y. Zhang, “Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification,” J. Opt. Soc. Am. B 24, 1633-1638 (2007). [CrossRef]
  15. P. Fita, Y. Stepanenko, and C. Radzewicz, “Femtosecond transient fluorescence spectrometer based on parametric amplification,” Appl. Phys. Lett. 86, 021909 (2005). [CrossRef]
  16. Z. Yu, X. Chen, Y. Weng, and J. Y. Zhang, “Nonlinear chirp effect introduced by Kerr medium as optical switches in ultrafast time-resolved measurements,” Opt. Lett. 34, 1117-1119 (2009). [CrossRef] [PubMed]
  17. X. H. Chen, X. F. Han, Y. X. Weng, and J. Y. Zhang, “Transient spectrometer for near-IR fluorescence based on parametric frequency upconversion,” Appl. Phys. Lett. 89, 061127 (2006). [CrossRef]
  18. J. Zhang, A. Shreenath, M. Kimmel, E. Zeek, R. Trebino, and S. Link, “Measurement of the intensity and phase of attojoule femtosecond light pulses using optical-parametric-amplification cross-correlation frequency-resolved optical gating,” Opt. Express 11, 601-609 (2003). [CrossRef] [PubMed]
  19. Y. X. Weng, X. F. Han, and J. Y. Zhang, “Determination of the detection limit for a noncollinear optical parametric amplification-gated femtosecond time-resolved fluorescence spectrometer--Reply to the Comment on “Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification”,” J. Opt. Soc. B 25, 1627-1631 (2008). [CrossRef]
  20. X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. M. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008). [CrossRef]
  21. X. F. Han, Y. X. Weng, A. L. Pan, B. S. Zou, and J. Y. Zhang, “Observation of delayed fluorescence in CdSxSe1-x nanobelts by femtosecond time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 92, 033102 (2008). [CrossRef]
  22. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 2006). [PubMed]
  23. S. Akhmanov, A. Chirkin, K. Drabovich, A. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598-605 (1968). [CrossRef]
  24. F. Seifert, V. Petrov, and F. Noack, “Sub-100-fs optical parametric generator pumped by a high-repetition-rate Ti: sapphire regenerative amplifier system,” Opt. Lett. 19, 837-839 (1994). [CrossRef] [PubMed]
  25. V. Petrov and F. Noack, “Tunable femtosecond optical parametric amplifier in the mid-infrared with narrow-band seeding,” J. Opt. Soc. Am. B 12, 2214-2221 (1995). [CrossRef]
  26. R. Baumgartner and R. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15, 432-444 (1979). [CrossRef]
  27. T. Kobayashi and A. Baltuska, “Sub-5 fs pulse generation from a noncollinear optical parametric amplifier,” Meas. Sci. Technol. 13, 1671-1682 (2002). [CrossRef]
  28. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268 (1999). [CrossRef]
  29. A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23, 1292-1294 (1998). [CrossRef]
  30. L. Hongjun, Z. Wei, C. Guofu, W. Yishan, C. Zhao, and R. Chi, “Investigation of spectral bandwidth of optical parametric amplification,” Appl. Phys. B 79, 569-576 (2004). [CrossRef]
  31. A. Shirakawa and T. Kobayashi, “Noncollinear phase-and group-velocity matching of optical parametric amplifier for ultrashort pulse generation,” IEICE Trans. Electron. 81, 246-253 (1998).
  32. R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, and R. Righini, “Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses,” J. Opt. Soc. Am. B 10, 2222-2232 (1993). [CrossRef]
  33. Fujian Castech Crystals, Inc. (Xihe, Fuzhou, Fujian, China) (1996), http://www.castech.com.
  34. P. Di Trapani, A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51, 3164-3168 (1995). [CrossRef] [PubMed]
  35. T. G. Giallorenzi and C. L. Tang, “Quantum theory of spontaneous parametric scattering of intense light,” Phys. Rev. 166, 225-233 (1968). [CrossRef]
  36. D. A. Kleinman, “Theory of optical parametric noise,” Phys. Rev. 174, 1027-1041 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited