Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Cross-phase modulation response of a DCC-DFB-SOA all-optical flip-flop

Not Accessible

Your library or personal account may give you access

Abstract

Using the coupled-mode and carrier rate equations, we have derived a dynamic model for the distributed feedback semiconductor optical amplifier (DFB-SOA) all-optical flip-flop (AOFF). We have analyzed the effects of the coupling coefficient and the corrugation position on the dynamic response of the device. We have also investigated the effects of cross-phase modulation on the switching speed of the DFB-SOA with the distributed coupling coefficient (DCC), known as the DCC-DFB-SOA AOFF. Furthermore, it is shown that by optimizing the coupling coefficient value and the corrugation position, the AOFF speed limitation is improved significantly. The ON and OFF switching time values, in an optimized condition, are 300 and 100 ps, respectively, while the carrier lifetime is about 780 ps. In comparison with those of a conventional DFB-SOA-AOFF, these values show reductions of more than 2 and 14 times in the ON and the OFF switching times, respectively. Under such conditions, a maximum bit rate of 1.4 GHz is achieved. The finite difference time-domain method is utilized for the numerical simulations.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
All-Optical flip-flop operation using a SOA and DFB laser diode optical feedback combination

W. D’Oosterlinck, F. Öhman, J. Buron, S. Sales, A. Pérez Pardo, A. Ortigosa-Blanch, G. Puerto, G. Morthier, and R. Baets
Opt. Express 15(10) 6190-6199 (2007)

All-optical hysteresis control by means of cross-phase modulation in semiconductor optical amplifiers

Drew N. Maywar, Govind P. Agrawal, and Yoshiaki Nakano
J. Opt. Soc. Am. B 18(7) 1003-1013 (2001)

Robust optical control of an optical-amplifier-based flip-flop

D. N. Maywar, G. P. Agrawal, and Y. Nakano
Opt. Express 6(3) 75-80 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.