OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: 1736–1745

Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling

Michael R. Gleeson and John T. Sheridan  »View Author Affiliations


JOSA B, Vol. 26, Issue 9, pp. 1736-1745 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001736


View Full Text Article

Enhanced HTML    Acrobat PDF (251 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The photochemical processes present during free-radical-based holographic grating formation are examined. A kinetic model is presented, which includes, in a more nearly complete and physically realistic way, most of the major photochemical and nonlocal photopolymerization-driven diffusion effects. These effects include: (i) non-steady-state kinetics (ii) spatially and temporally nonlocal polymer chain growth (iii) time varying photon absorption (iv) diffusion controlled viscosity effects (v) multiple termination mechanisms, and (vi) inhibition. The convergence of the predictions of the resulting model is then examined. Comparisons with experimental results are carried out in Part II of this series of papers [ J. Opt. Soc. Am. B 26, 1746 (2009) ].

© 2009 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings
(160.5470) Materials : Polymers
(300.1030) Spectroscopy : Absorption
(160.5335) Materials : Photosensitive materials

ToC Category:
Materials

History
Original Manuscript: February 5, 2009
Revised Manuscript: May 12, 2009
Manuscript Accepted: July 14, 2009
Published: August 19, 2009

Citation
Michael R. Gleeson and John T. Sheridan, "Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling," J. Opt. Soc. Am. B 26, 1736-1745 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-9-1736


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746-1754 (2009). [CrossRef]
  2. G. Manivannan and R. A. Lessard, “Trends in holographic recording materials,” Trends Polym. Sci. 2, 282-290 (1994).
  3. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449-463 (2001). [CrossRef]
  4. M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerisation in the formation of holographic gratings,” J. Opt. A 10, 024008 (2009). [CrossRef]
  5. S. Harbour, J. V. Kelly, T. Galstian, and J. T. Sheridan, “Optical birefringence and anisotropic scattering in acrylate based holographic polymer dispersed liquid crystals,” Opt. Commun. 278, 28-33 (2007). [CrossRef]
  6. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46, 295-301 (2007). [CrossRef] [PubMed]
  7. J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406-407 (2006). [CrossRef] [PubMed]
  8. J. V. Kelly, M. R. Gleeson, C. E. Close, and J. T. Sheridan, “Optimized scheduling for holographic data storage,” J. Opt. A 10, 115203 (2008). [CrossRef]
  9. M. R. Gleeson, “Analysis of the photochemical kinetics in photopolymers for holographic data storage and hybrid photonic circuits,” Ph.D. thesis (University College Dublin, 2008).
  10. M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008). [CrossRef]
  11. M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007). [CrossRef]
  12. T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12, 1431-1438 (2000). [CrossRef]
  13. G. Odian, Principles of Polymerization (Wiley, 1991).
  14. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003). [CrossRef]
  15. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990-7004 (2005). [CrossRef] [PubMed]
  16. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008). [CrossRef]
  17. C. H. Bamford, A. D. Jenkins, and R. Johnston, “Termination by primary radicals in vinyl polymerization,” Trans. Faraday Soc. 55, 1451-1460 (1959). [CrossRef]
  18. M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homopolymerizations,” Ind. Eng. Chem. Res. 36, 1247-1252 (1997). [CrossRef]
  19. M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552-6559 (1999). [CrossRef]
  20. H. K. Mahabadi, “Effects of chain-length dependence of termination rate-constant on the kinetics of free-radical polymerization. Part 1. Evaluation of an analytical expression relating the apparent rate-constant of termination to the number-average degree of polymerization,” Macromolecules 18, 1319-1324 (1985). [CrossRef]
  21. A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699-706 (1993). [CrossRef]
  22. A. K. O'Brien and C. N. Bowman, “Modeling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15(2), 176-182 (2006). [CrossRef]
  23. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079-2088 (2006). [CrossRef]
  24. L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496-4499 (1998). [CrossRef]
  25. T. Manabe, T. Utsumi, and S. Okamura, “Behavior of primary radicals in vinyl polymerization,” J. Polym. Sci. 58(166), 121-146 (1962). [CrossRef]
  26. C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerizations reactions,” J. Macromol. Sci. Pure Appl. Chem. A33(2), 173-190 (1996).
  27. A. K. Doolittle, “Studies in Newtonian flow II. The dependence of the viscosity of liquids on free-space,” J. Appl. Phys. 22, 1471-1475 (1951). [CrossRef]
  28. A. Bondi, “Free volumes and free rotation in simple liquids and liquid saturated hydrocarbons,” J. Phys. Chem. 58, 929-939 (1954). [CrossRef]
  29. F. L. Marten and A. E. Hamielec, “High-conversion diffusion-controlled polymerization of styrene, Part 1,” J. Appl. Polym. Sci. 27(2), 489-505 (1982). [CrossRef]
  30. C. N. Bowman and N. A. Peppas, “Coupling of kinetics and volume relaxation during polymerizations of multiacrylates and multimethacrylates,” Macromolecules 24, 1914-1920 (1991). [CrossRef]
  31. M. L. Williams, R. F. Landel, and J. D. Ferry, “Temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,” Phys. Rev. 98, 1549-1549 (1955). [CrossRef]
  32. K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, “Coupling chain length dependent and reaction diffusion controlled termination in the free radical polymerization of multivinyl (meth)acrylates,” Macromolecules 35, 7968-7975 (2002).
  33. I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998). [CrossRef]
  34. A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, “Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials,” Electronic-Liquid Crystal Communications (2004). Available at http://e_lc.org/Documents/T.V Galstian_2004_05_05_11_13_17.
  35. “PreSens GmbH--precision sensing,”http://www.presens.de/html/start.html (retrieved 2007).
  36. K. A. Connors, Chemical Kinetics: The Study of Reaction Rates in Solutions (Wiley-VCH, 1990).
  37. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000). [CrossRef]
  38. J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16, 1651-1657 (1999). [CrossRef]
  39. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621-629 (2002). [CrossRef]
  40. J. V. Kelly, F. T. ONeill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407-416 (2005). [CrossRef]
  41. J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7, 232-242 (2007). [PubMed]
  42. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2945 (1969).
  43. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997). [CrossRef]
  44. C. Neipp, A. Belendez, S. Gallego, M. Ortuno, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835-1843 (2003). [CrossRef] [PubMed]
  45. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006). [CrossRef]
  46. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951-965 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited