OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: 1755–1759

Theoretical model for an atomic optical filter based on optical anisotropy

Zhusong He, Yundong Zhang, Hao Wu, Ping Yuan, and Shuangqiang Liu  »View Author Affiliations

JOSA B, Vol. 26, Issue 9, pp. 1755-1759 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (401 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a three-level theoretical model for atomic optical filters based on optical anisotropy induced by the circularly polarized pump field. Calculative results are in good agreement with experimental results reported previously [ Opt. Lett 27, 500 (2002) ]. The filtering characteristics such as the functions of pump intensity, pump detuning, and cell temperature are studied, respectively. The theoretical analysis presented here is expected to be useful in investigating atomic optical filters and polarization spectroscopy.

© 2009 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(260.1440) Physical optics : Birefringence
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6320) Spectroscopy : Spectroscopy, high-resolution

ToC Category:

Original Manuscript: May 21, 2009
Revised Manuscript: July 7, 2009
Manuscript Accepted: July 30, 2009
Published: August 20, 2009

Zhusong He, Yundong Zhang, Hao Wu, Ping Yuan, and Shuangqiang Liu, "Theoretical model for an atomic optical filter based on optical anisotropy," J. Opt. Soc. Am. B 26, 1755-1759 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619-2622 (1995). [CrossRef]
  2. H. Chen, M. A. White, David. A. Krugger, and C. Y. She, “Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett. 21, 1093-1095 (1996). [CrossRef] [PubMed]
  3. C. Fricke-Begemann, M. Alpers, and J. Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932-1934 (2002). [CrossRef]
  4. J. Höffner and C. Fricke-Begemann, “Accurate lidar temperature with narrowband filters,” Opt. Lett. 30, 890-892 (2005). [CrossRef] [PubMed]
  5. J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16, 846-848 (1991). [CrossRef] [PubMed]
  6. D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett. 16, 867-869 (1991). [CrossRef] [PubMed]
  7. R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, and D. M. Allocca, “Experimental demonstration of an excited-state Faraday filter operating at 532 nm,” Opt. Lett. 20, 106-108 (1995). [CrossRef] [PubMed]
  8. Y. Peng, “Transmission characteristics of an excited-state Faraday optical filter at 532 nm,” J. Phys. B 30, 5123-5129 (1997). [CrossRef]
  9. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, 147-150 (2001). [CrossRef]
  10. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron. 37, 372-375 (2001). [CrossRef]
  11. L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275-279 (1998). [CrossRef]
  12. S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, G. Yang, P. R. Herczfeld, and D. M. Allocca, “Induced-dichroism-excited atomic line filter at 532 nm,” Opt. Lett. 20, 1427-1429 (1995). [CrossRef] [PubMed]
  13. L. D. Turner, V. Karaganov, P. J. O. Teubner, and R. E. Scholten, “Sub-Doppler bandwidth atomic optical filter,” Opt. Lett. 27, 500-502 (2002). [CrossRef]
  14. Z. He, Y. Zhang, S. Liu, and P. Yuan, “Transmission characteristics of an excited-state induced dispersion optical filter of rubidium at 775.9 nm,” Chin. Opt. Lett. 5, 252-254 (2007).
  15. A. Cere, V. Parigi, M. Abad, F. Wolfgramm, A. Predojevic, and W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett. 34, 1012-1014 (2009). [CrossRef] [PubMed]
  16. K.-A. Suominen, S. Stenholm, and B. Stahlberg, “Laser-induced dispersion in a three-level system,” J. Opt. Soc. Am. B 8, 1899-1906 (1991). [CrossRef]
  17. P. Yeh, “Dispersive magnetooptic filters,” Appl. Opt. 21, 2069-2075 (1982). [CrossRef] [PubMed]
  18. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003), pp. 283-293.
  19. J. Huennekens, R. K. Namiotka, J. Sagle, and Z. J. Jabbour, “Thermalization of velocity-selected excited-state population by resonance exchange collisions and radiation trapping,” Phys. Rev. A 51, 4472-4482 (1995). [CrossRef] [PubMed]
  20. R. K. Namiotka, J. Huennekens, and M. Allegrini, “Energy-pooling collisions in potassium: 4P(J)+4P(J)−4S+nI(nI=5P,6S,4D),” Phys. Rev. A 56, 514-520 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited