OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: 1767–1771

Band gaps in multicomponent photonic crystals: splitting effects and the inverse design problem

Anton V. Moroz, Mikhail V. Rybin, Kirill B. Samusev, and Mikhail F. Limonov  »View Author Affiliations


JOSA B, Vol. 26, Issue 9, pp. 1767-1771 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001767


View Full Text Article

Enhanced HTML    Acrobat PDF (450 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of dielectric and structural parameters of photonic crystals on conditions of ( h k l ) stop band switching and splitting effects is considered. Splitting effects play a key role in selective control of photonic stop bands, i.e., the possibility to control light fluxes propagating at different wavelengths. Detailed studies of splitting effects in three-component photonic crystals with the face-centered-cubic lattice formed from coated spheres are reported. The calculations performed in the framework of the analytical model based on analysis of the scattering form factor are given. It is shown that in contrast to traditional numerical methods used in calculations of photonic properties of a periodic structure, the analytical approach allows one to solve the inverse design problem, i.e., to infer structural photonic crystal parameters from desired photonic properties.

© 2009 Optical Society of America

OCIS Codes
(130.4815) Integrated optics : Optical switching devices
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: March 5, 2009
Manuscript Accepted: July 17, 2009
Published: August 20, 2009

Citation
Anton V. Moroz, Mikhail V. Rybin, Kirill B. Samusev, and Mikhail F. Limonov, "Band gaps in multicomponent photonic crystals: splitting effects and the inverse design problem," J. Opt. Soc. Am. B 26, 1767-1771 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-9-1767


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton U. Press, 2008).
  2. Photonic Crystals: Physics, Fabrication and Applications, K.Inoue and K.Ohtaka, eds. (Springer, 2004).
  3. K. Sakoda, Optical Properties of Photonic Crystals, 2nd ed. (Springer, 2004).
  4. C. López, “Three-dimensional photonic bandgap materials: semiconductors for light,” J. Opt. A, Pure Appl. Opt. 8, R1-R14 (2006). [CrossRef]
  5. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  6. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  7. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  8. H. S. Sözüer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962-13972 (1992). [CrossRef]
  9. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896-3908 (1998). [CrossRef]
  10. J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772-2775 (1992). [CrossRef] [PubMed]
  11. K. Kunz and R. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, 1993).
  12. A. Modinos, N. Stefanou, I. E. Psarobas, and V. Yannopapas, “On wave propagation in inhomogeneous systems,” Physica B 296, 167-173 (2001). [CrossRef]
  13. A. V. Baryshev, A. B. Khanikaev, M. Inoue, P. B. Lim, A. V. Sel'kin, G. Yushin, and M. F. Limonov, “Resonant behavior and selective switching of stop bands in three-dimensional photonic crystals with inhomogeneous components,” Phys. Rev. Lett. 99, 063906 (2007). [CrossRef] [PubMed]
  14. M. V. Rybin, A. V. Baryshev, A. B. Khanikaev, M. Inoue, K. B. Samusev, A. V. Sel'kin, G. Yushin, and M. F. Limonov, “Selective manipulation of stop bands in multicomponent photonic crystals: opals as an example,” Phys. Rev. B 77, 205106 (2008). [CrossRef]
  15. A. K. Samusev, M. V. Rybin, K. B. Samusev, and M. F. Limonov are preparing a manuscript to be called “The studies of the band gap switching effects in multicomponent photonic crystals with different dimensions.”
  16. V. N. Astratov, V. N. Bogomolov, A. A. Kaplyanskii, A. V. Prokofiev, L. A. Samoilovich, S. M. Samoilovich, and Yu. A. Vlasov, “Optical spectroscopy of opal matrices with CdS embedded in its pores--quantum confinement and photonic band gap effects,” Nuovo Cimento D 17, 1349-1354 (1995). [CrossRef]
  17. Yu. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in a disordered photonic crystal,” Phys. Rev. B 60, 1555-1562 (1999). [CrossRef]
  18. S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethyl-methacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603 (2001). [CrossRef]
  19. D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel'kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91, 213903 (2003). [CrossRef] [PubMed]
  20. A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, K. B. Samusev, and D. E. Usvyat, “Bragg diffraction of light in synthetic opals,” Phys. Solid State 45, 459-471 (2003). [CrossRef]
  21. A. V. Baryshev, A. A. Kaplyanski, V. A. Kosobukin, M. F. Limonov, and A. P. Skvortsov, “Spectroscopy of the photonic stop band in synthetic opals,” Phys. Solid State 46, 1331-1339 (2004). [CrossRef]
  22. A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, K. B. Samusev, D. E. Usvyat, and M. F. Limonov, “Photonic band-gap structure: from spectroscopy towards visualization,” Phys. Rev. B 70, 113104 (2004). [CrossRef]
  23. P. D. García, J. F. Galisteo-López, and C. López, “Tuning and optical study of the Gamma-X and Gamma-L photonic pseudogaps in opals,” Appl. Phys. Lett. 87, 201109 (2005). [CrossRef]
  24. A. V. Baryshev, A. B. Khanikaev, H. Uchida, M. Inoue, and M. F. Limonov, “Interaction of polarized light with three-dimensional opal-based photonic crystals,” Phys. Rev. B 73, 033103 (2006). [CrossRef]
  25. M. V. Rybin, A. V. Baryshev, M. Inoue, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, A. K. Samusev, and A. V. Sel'kin, “Complex interaction of polarized light with three-dimensional opal-based photonic crystals: diffraction and transmission studies,” Photonics Nanostruct. Fundam. Appl. 4, 146-154 (2006). [CrossRef]
  26. A. B. Pevtsov, D. A. Kurdyukov, V. G. Golubev, A. V. Akimov, A. A. Meluchev, A. V. Sel'kin, A. A. Kaplyanskii, D. R. Yakovlev, and M. Bayer, “Ultrafast stop band kinetics in a three-dimensional opal-VO2 photonic crystal controlled by a photoinduced semiconductor-metal phase transition,” Phys. Rev. B 75, 153101 (2007). [CrossRef]
  27. M. V. Rybin, K. B. Samusev, and M. F. Limonov, “High Miller-index photonic bands in synthetic opals,” Photonics Nanostruct. Fundam. Appl. 5, 119-124 (2007). [CrossRef]
  28. M. Burger, S. Osher, and E. Yablonovitch, “Inverse problem techniques for the design of photonic crystals,” IEICE Trans. Electron. 87, 258-265 (2003).
  29. R. K. Iler, The Chemistry of Silica (Wiley & Sons, 1979).
  30. O. A. Kavtreva, A. V. Ankudinov, A. G. Bazhenova, Yu. A. Kumzerov, M. F. Limonov, K. B. Samusev, and A. V. Sel'kin, “Optical characterization of natural and synthetic opals by Bragg reflection spectroscopy,” Phys. Solid State 49, 708-714 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited