OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: 1772–1779

Information theoretical analysis of hierarchical nano-optical systems in the subwavelength regime

Makoto Naruse, Hirokazu Hori, Kiyoshi Kobayashi, Masatoshi Ishikawa, Kenji Leibnitz, Masayuki Murata, Naoya Tate, and Motoichi Ohtsu  »View Author Affiliations

JOSA B, Vol. 26, Issue 9, pp. 1772-1779 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (534 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical near-field interactions exhibit a hierarchical response, which is one of the most unique attributes of light–matter interactions occurring locally on the nanometer scale. It allows hierarchical nano-optical systems that break through the integration restrictions posed by the diffraction limit of conventional propagating light and offers multiple hierarchical functionalities at different physical scales in the subwavelength regime. Here we demonstrate an information theoretical approach to such nano-optical systems while assessing their electromagnetic and logical aspects via angular-spectrum analysis. Mutual information at each level of the hierarchy reveals quantitatively the relation between the physical effects associated with the hierarchy in the optical near-fields, as well as possible environmental disturbances affecting the system locally or globally, and the system’s capabilities for information processing and communication.

© 2009 Optical Society of America

OCIS Codes
(200.3050) Optics in computing : Information processing
(260.2110) Physical optics : Electromagnetic optics
(110.3055) Imaging systems : Information theoretical analysis

ToC Category:
Imaging Systems

Original Manuscript: May 11, 2009
Revised Manuscript: July 20, 2009
Manuscript Accepted: July 27, 2009
Published: August 24, 2009

Makoto Naruse, Hirokazu Hori, Kiyoshi Kobayashi, Masatoshi Ishikawa, Kenji Leibnitz, Masayuki Murata, Naoya Tate, and Motoichi Ohtsu, "Information theoretical analysis of hierarchical nano-optical systems in the subwavelength regime," J. Opt. Soc. Am. B 26, 1772-1779 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (Taylor and Francis, 2008). [CrossRef]
  2. Near Field Optics, D.W.Pohl and D.Courjon, eds. (Kluwer Academic, 1993).
  3. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003). [CrossRef]
  4. Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99, 136802 (2007). [CrossRef] [PubMed]
  5. A. Ueda, T. Tayagaki, and Y. Kanemitsu, “Energy transfer from semiconductor nanocrystal monolayers to metal surfaces revealed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 133118 (2008). [CrossRef]
  6. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314-317 (2000). [CrossRef] [PubMed]
  7. T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics 1, 011597 (2007). [CrossRef]
  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442-453 (2008). [CrossRef]
  9. M. Naya, I. Tsurusawa, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasutani, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86, 201113 (2005). [CrossRef]
  10. M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005). [CrossRef]
  11. M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, “Hierarchy in optical near-fields and its application to memory retrieval,” Opt. Express 13, 9265-9271 (2005). [CrossRef] [PubMed]
  12. M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008). [CrossRef]
  13. N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express 17, 11113-11121 (2009). [CrossRef] [PubMed]
  14. C. Cohen-Tannoudji, I. Dupont-Roc, and G. Grynberg, Photons and Atoms (Wiley, 1989).
  15. H. Ishihara and K. Cho, “Nonlocal theory of the third-order nonlinear optical response of confined excitons,” Phys. Rev. B 48, 7960-7974 (1993). [CrossRef]
  16. M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, “Nanophotonics: application of dressed photons to novel photonic devices and systems,” IEEE J. Sel. Top. Quantum Electron. 14, 1404-1417 (2008). [CrossRef]
  17. T. Inoue and H. Hori, “Quantum theory of radiation in optical near field based on quantization of evanescent electromagnetic waves using detector mode,” in Progress in Nano-Electro-Optics IV, M.Ohtsu, ed. (Springer Verlag, 2005), 127-199. [CrossRef]
  18. W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69, 233312 (2004). [CrossRef]
  19. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006). [CrossRef] [PubMed]
  20. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110 (2006). [CrossRef]
  21. K. Matsuda and T. Saiki, “Local density of states mapping of a field-induced quantum dot by near-field photoluminescence microscopy,” Appl. Phys. Lett. 87, 043112 (2005). [CrossRef]
  22. E. Runge and C. Lienau, “Near-field wave-function spectroscopy of excitons and biexcitons,” Phys. Rev. B 71, 035347 (2005). [CrossRef]
  23. C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J. 27, 379-423 (1948);C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J. 27, 623-656 (1948).
  24. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411, 1027-1030 (2001). [CrossRef] [PubMed]
  25. M. A. Neifeld and M. Lee, “Information theoretic framework for the analysis of a slow-light delay device,” J. Opt. Soc. Am. B 25, C31-C38 (2008). [CrossRef]
  26. P. Oittinen and H. Saarelma, “Average mutual information as a quality measure in imaging processes,” J. Opt. Soc. Am. A 3, 897-901 (1986). [CrossRef]
  27. D. A. B. Miller, “Fundamental limit for optical components,” J. Opt. Soc. Am. B 24, A1-A18 (2007). [CrossRef]
  28. A. W. Eckford, “Achievable information rates for molecular communication with distinct molecules,” in Bio-Inspired Models of Network, Information and Computing Systems 2007 (IEEE, 2007), pp. 313-315. [CrossRef]
  29. R. C. Yu, C. G. Pesce, A. Colman-Lerner, L. Lok, D. Pincus, E. Serra, M. Holl, K. Benjamin, A. Gordon, and R. Brent, “Negative feedback that improves information transmission in yeast signaling,” Nature 456, 755-761 (2008). [CrossRef] [PubMed]
  30. M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys. 46, 6095-6103 (2007). [CrossRef]
  31. M. Naruse, K. Nishibayashi, T. Kawazoe, K. Akahane, N. Yamamoto, and M. Ohtsu, “Scale-dependent optical near-fields in InAs quantum dots and their application to non-pixelated memory retrieval,” Appl. Phys. Express 1, 072101 (2008). [CrossRef]
  32. E. Wolf and M. Nieto-Vesperinas, “Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences,” J. Opt. Soc. Am. A 2, 886-889 (1985). [CrossRef]
  33. M. Naruse, T. Yatsui, J. H. Kim, and M. Ohtsu, “Hierarchy in optical near-fields by nano-scale shape engineering and its application to traceable memory,” Appl. Phys. Express 1, 062004 1-3 (2008). [CrossRef]
  34. K. Kitamura, T. Yatsui, M. Ohtsu, and G.-C. Yi, “Fabrication of vertically aligned ultrafine ZnO nanorods using metal-organic vapor phase epitaxy with a two-temperature growth method,” Nanotechnology 19, 175305 (2008). [CrossRef] [PubMed]
  35. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991). [CrossRef]
  36. Z. K. Tang, A. Yanase, T. Yasui, Y. Segawa, and K. Cho, “Optical selection rule and oscillator strength of confined exciton system in CuCl thin films,” Phys. Rev. Lett. 71, 1431-1434 (1993). [CrossRef] [PubMed]
  37. T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Near-field optical chemical vapor deposition using Zn(acac)2 with a non-adiabatic photochemical process,” Appl. Phys. B 84, 247-251 (2006). [CrossRef]
  38. M. Naruse, T. Yatsui, W. Nomura, K. Hirata, Y. Tabata, and M. Ohtsu, “Analysis of surface roughness of optical elements planarized by nonadiabatic optical near-field etching,” J. Appl. Phys. 105, 063516 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited