OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: 1801–1807

Two-photon absorption in photonic nanowires made from photonic crystals

Mahi R. Singh  »View Author Affiliations


JOSA B, Vol. 26, Issue 9, pp. 1801-1807 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001801


View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied the phenomenon of two-photon absorption in photonic nanowires doped with an ensemble of four-level nanoparticles. The photonic nanowire is made from two photonic crystals, A and B, where A is embedded in B. Photons are confined in the nanowire due to the band structure engineering of photonic crystals. It is considered that one of the resonance levels of nanoparticles lies near a photon-bound state of the nanowire. The two-photon absorption coefficient has been calculated using the time-dependent Schrödinger equation. It is found that there is an inhibition of two-photon absorption in the system. This is due to the strong coupling between nanoparticles and the nanowire.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(250.0250) Optoelectronics : Optoelectronics
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(250.6715) Optoelectronics : Switching
(060.6718) Fiber optics and optical communications : Switching, circuit
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: April 29, 2009
Revised Manuscript: July 15, 2009
Manuscript Accepted: July 22, 2009
Published: August 28, 2009

Citation
Mahi R. Singh, "Two-photon absorption in photonic nanowires made from photonic crystals," J. Opt. Soc. Am. B 26, 1801-1807 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-9-1801


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato1, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1096-1101 (2007). [CrossRef]
  2. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16, 1300-1320 (2005). [CrossRef]
  3. B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20, 398-400 (2008). [CrossRef]
  4. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008). [CrossRef]
  5. N. A. Wolchover, F. Luan, A. K. George, J. C. Knight, and F. G. Omenetto, “High nonlinearity glass photonic crystal nanowires,” Opt. Express 15, 829-833 (2007). [CrossRef] [PubMed]
  6. N. Imoto, H. A. Haus, and Y. Yamamoto, “Quantum nondemolition measurement of the photon number via the optical Kerr effect,” Phys. Rev. A 32, 2287-2292 (1985). [CrossRef] [PubMed]
  7. D. Suter, The Physics of Laser-Atom Interaction (Cambridge U. Press, 1997), and references therein. [CrossRef]
  8. G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two-photon absorption,” Phys. Rev. Lett. 77, 1039-1942 (1996). [CrossRef] [PubMed]
  9. J. Y. Gao, S. U. Yang, D. Wang, X. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000). [CrossRef]
  10. D. McGloin, “Coherent effects in a driven Vee scheme,” J. Phys. B 36, 2861-2871 (2003). [CrossRef]
  11. J. J. Zou, X. Hu, G. Cheng, X. Li, and D. Du, “Inhibition of two-photon absorption in a three-level system with a pair of bichromatic fields,” Phys. Rev. A 72, 055802 (2005). [CrossRef]
  12. M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801 (2001). [CrossRef]
  13. W. Jiang, Q. Chen, Y. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically induced transparency,” Phys. Rev. A 73, 053804 (2006). [CrossRef]
  14. D. D. Yavuz, “All-optical femtosecond switch using two-photon absorption,” Phys. Rev. A 74, 053804 (2006). [CrossRef]
  15. G. H. Mai, J. Shen, K. Rajiv, S. H. Tangi, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B: Lasers Opt. 80, 359-363 (2005). [CrossRef]
  16. M. R. Singh, “Inhibition of two-photon absorption due to dipole-dipole interaction in nanoparticles,” Phys. Lett. A 372, 5083-5089 (2008). [CrossRef]
  17. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. B. Meade, Photonic Crystals (Princeton U. Press, 2008).
  18. M. R. Singh, “A study of optoelectronics in photonic nanowires made from photonic crystals,” Appl. Phys. B: Lasers Opt. 93, 91-102 (2008). [CrossRef]
  19. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  20. V. I. Rupasov and M. R. Singh, “Quantum gap solitons and many-polariton-atom-bound states in dispersive medium and photonic bandgap,” Phys. Rev. Lett. 77, 338-341 (1996). [CrossRef] [PubMed]
  21. M. R. Singh and R. B. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. B 41, 015401 (2008). [CrossRef]
  22. D. Petrosyan and G. Kurizki, “Photon-photon correlations and entanglement in doped photonic crystals,” Phys. Rev. A 64, 23810 (2001). [CrossRef]
  23. P. Tran, “Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect,” J. Opt. Soc. Am. B 14, 2589-2595 (1997). [CrossRef]
  24. M. R. Singh, “Dipole-dipole interaction in photonic-bandgap materials doped with nanoparticles,” Phys. Rev. A 75, 043809 (2007). [CrossRef]
  25. S. John and T. Quang, “Resonant nonlinear dielectric response in a photonic bandgap material,” Phys. Rev. Lett. 76, 2484-2487 (1996). [CrossRef] [PubMed]
  26. M. R. Singh, “Transparency in nanophotonic quantum wires,” J. Phys. B 42, 065503 (2009). [CrossRef]
  27. P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay, “Fundamental quantum optics in structured reservoirs,” Rep. Prog. Phys. 63, 455-503 (2000), and references therein. [CrossRef]
  28. S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43, 12772-12789 (1991). [CrossRef]
  29. M. R. Singh, Recent Research Activities in Chemical Physics: From Atomic Scale to Macroscale, E.Paspalakis and A.F.Terzis, eds. (Transworld Research Network, Trivandrum, 2007), chap. 5, pp. 101-165.
  30. E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency near a photonic band edge,” Phys. Rev. A 60, R33-R66 (1999). [CrossRef]
  31. D. G. Angelakis, E. Paspalakis, and P. L. Knight, “Coherent phenomena in photonic crystals,” Phys. Rev. A 64, 013801 (2001). [CrossRef]
  32. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited