OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: A113–A125

Terahertz reflection spectroscopy of Debye relaxation in polar liquids [Invited]

Uffe Møller, David G. Cooke, Koichiro Tanaka, and Peter Uhd Jepsen  »View Author Affiliations

JOSA B, Vol. 26, Issue 9, pp. A113-A125 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1248 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Terahertz (THz) radiation interacts strongly with the intermolecular hydrogen-bond network in aqueous liquids. The dielectric properties of liquid water and aqueous solutions in the THz spectral region are closely linked to the microscopic dynamics of the liquid solution, and hence THz spectroscopy offers an important insight into fundamental intermolecular interactions in polar liquids. At the same time, the strong and characteristic interaction between THz radiation and liquids offers a methodology for the classification of liquids inside containers, and hence the THz region is suitable for remote detection of some of the properties of bottled liquids. Here we present a review of THz spectroscopy and modeling of water–ethanol mixtures, and establish a link between the dielectric function of water–ethanol mixtures and some of their thermodynamic properties. We then review how the knowledge of the dielectric function of aqueous mixtures can be used for inspection of liquids inside bottles. Finally we draw up some of the limits to the applicability of THz reflection spectroscopy in the identification of dangerous liquids.

© 2009 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(300.6495) Spectroscopy : Spectroscopy, teraherz

Original Manuscript: August 13, 2009
Manuscript Accepted: August 13, 2009
Published: August 28, 2009

Virtual Issues
(2009) Advances in Optics and Photonics

Uffe Møller, David G. Cooke, Koichiro Tanaka, and Peter Uhd Jepsen, "Terahertz reflection spectroscopy of Debye relaxation in polar liquids [Invited]," J. Opt. Soc. Am. B 26, A113-A125 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Segelstein, “The complex refractive index of water,” M.S. thesis (Univ. of Missouri-Kansas City, 1981). Data can be found at http://www.philiplaven.com/p20.html.
  2. T. Arikawa, M. Nagai, and K. Tanaka, “Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 457, 12-17 (2008). [CrossRef]
  3. U. Heugen, G. Schwaab, E. Bründermann, M. Heyden, X. Yu, D. M. Leitner, and M. Havenith, “Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 103, 12301-12306 (2006). [CrossRef] [PubMed]
  4. M. Heyden, E. Bründermann, U. Heugen, G. Niehues, D. M. Leitner, and M. Havenith, “Long-range influence of carbohydrates on the solvation dynamics of water--Answers from terahertz absorption measurements and molecular modeling simulations,” J. Am. Chem. Soc. 130, 5773-5779 (2008). [CrossRef] [PubMed]
  5. D. M. Mittleman, M. C. Nuss, and V. L. Colvin, “Terahertz spectroscopy of water in inverse micelles,” Chem. Phys. Lett. 275, 332-338 (1997). [CrossRef]
  6. J. E. Boyd, A. Briskman, V. L. Colvin, and D. M. Mittleman, “Direct observation of terahertz surface modes in nanometer-sized liquid water pools,” Phys. Rev. Lett. 87, 147401 (2001). [CrossRef] [PubMed]
  7. J. E. Boyd, A. Briskman, C. M. Sayes, D. Mittleman, and V. Colvin, “Terahertz vibrational modes of inverse micelles,” J. Phys. Chem. B 106, 6346-6353 (2002). [CrossRef]
  8. J. Zhang and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer water layers,” Opt. Lett. 29, 1617-1619 (2004). [CrossRef] [PubMed]
  9. J. Zhang and D. Grischkowsky, “Terahertz time-domain spectroscopy of submonolayer water adsorption in hydrophilic silica aerogel,” Opt. Lett. 29, 1031-1033 (2004). [CrossRef] [PubMed]
  10. P. Uhd Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30, 29-31 (2005). [CrossRef] [PubMed]
  11. T. J. Parker, “Dispersive Fourier transform spectroscopy,” Contemp. Phys. 31, 335-353 (1990). [CrossRef]
  12. M. N. Afsar and J. B. Hasted, “Measurements of the optical constants of liquid H2O and D2O between 6 and 450 cm−1,” J. Opt. Soc. Am. 67, 902-904 (1977). [CrossRef]
  13. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  14. M. van Exter, Ch. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128-1130 (1989). [CrossRef]
  15. P. Uhd Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424-2436 (1996). [CrossRef]
  16. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321-2323 (1996). [CrossRef]
  17. L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330-333 (1995). [CrossRef]
  18. P. Uhd Jepsen, U. Møller, and H. Merbold, “Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy,” Opt. Express 15, 717-737 (2007). [CrossRef]
  19. M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millim. Waves 27, 505-515 (2006). [CrossRef]
  20. H. Hirori, M. Nagai, and K. Tanaka, “Destructive interference effect on surface plasmon resonance in terahertz attenuated total reflection,” Opt. Express 13, 10801-10814 (2005). [CrossRef] [PubMed]
  21. N. E. Hill, W. E. Vaughan, A. H. Price, and M. Davis, Dielectric Properties and Molecular Behaviour (Van Nostrand Reinhold Company, 1969).
  22. R. M. Hill and L. A. Dissado, “Debye and non-Debye relaxation,” J. Phys. C 18, 3829-3836 (1985). [CrossRef]
  23. P. Uhd Jepsen, J. K. Nielsen, and U. Møller, “Characterization of aqueous alcohol solutions in bottles with THz reflection spectroscopy,” Opt. Express 16, 9318-9331 (2008). [CrossRef] [PubMed]
  24. T. Sato and R. Buchner, “Dielectric relaxation processes in ethanol/water mixtures,” J. Phys. Chem. A 108, 5007-5015 (2004). [CrossRef]
  25. H. Yada, M. Nagai, and K. Tanaka, “Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 464, 166-170 (2008). [CrossRef]
  26. Terahertz Spectroscopy: Principles and ApplicationsS.Dexheimer, ed. (CRC Press, 2007). [CrossRef]
  27. C. Rønne, L. Thrane, P.-O. Astrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319-5331 (1997). [CrossRef]
  28. J. T. Kindt and C. A. Schmuttenmaer, “Far-Infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100, 373-379 (1996). [CrossRef]
  29. H. Kitahara, T. Yagi, K. Mano, M. W. Takeda, S. Kojima, and S. Nishizawa, “Dielectric characteristics of water solutions of ethanol in the terahertz region,” J. Korean Phys. Soc. 46, 82-85 (2005).
  30. J. B. Hasted, S. K. Husain, F. A. M. Frescura, and J. R. Birch, “The temperature variation of the near millimetre wavelength optical constants of water,” Infrared Phys. 27, 11-15 (1987). [CrossRef]
  31. J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, “Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols,” Chem. Phys. Lett. 165, 369-373 (1990). [CrossRef]
  32. U. Kaatze, “Complex permittivity of water as a function of frequency and temperature,” J. Chem. Eng. Data 34, 371-374 (1989). [CrossRef]
  33. J. M. Alison and R. J. Sheppard, “A precision waveguide system for the measurement of complex permittivity of lossy liquids and solid tissues in the frequency range 29 GHzto90 GHz--III. The liquid system for 57to82GHz: an investigation into water and formamide,” Meas. Sci. Technol. 2, 975-979 (1991). [CrossRef]
  34. H. Yada, M. Nagai, and K. Tanaka, “The intermolecular stretching vibration mode in water isotopes investigated with broadband terahertz time-domain spectroscopy,” Chem. Phys. Lett. 473, 279-283 (2009). [CrossRef]
  35. S. Mashimo, S. Kuwabara, S. Yagihara, and K. Higasi, “The dielectric relaxation of mixtures of water and primary alcohol,” J. Chem. Phys. 90, 3292-3294 (1989). [CrossRef]
  36. T. Sato, A. Chiba, and R. Nozaki, “Dynamical aspects of mixing schemes in ethanol-water mixtures in terms of the excess partial molar activation free energy, enthalpy, and entropy of the dielectric relaxation process,” J. Chem. Phys. 110, 2508-2521 (1999). [CrossRef]
  37. P. Petong, R. Pottel, and U. Kaatze, “Water-ethanol mixtures at different compositions and temperatures. A dieletric relaxation study,” J. Phys. Chem. A 104, 7420-7428 (2000). [CrossRef]
  38. R. Chang, Physical Chemistry for the Chemical and Biological Sciences, 3rd ed. (University Science Books, 2000).
  39. J. A. Boyne and A. G. Williamson, “Enthalpies of mixture of ethanol and water at 25°C,” J. Chem. Eng. Data 12, 318 (1967). [CrossRef]
  40. C. Zhang and X. Yang, “Molecular dynamics simulation of ethanol/water mixtures for structure and diffusion properties,” Fluid Phase Equilib. 231, 1-10 (2005). [CrossRef]
  41. M. T. Tyn and W. F. Calus, “Temperature and concentration dependence of mutual diffusion coefficients of some binary liquid systems,” J. Chem. Eng. Data 20, 310-316 (1975). [CrossRef]
  42. S. Schrödle, B. Fischer, H. Helm, and R. Buchner, “Picosecond dynamics and microheterogenity of water+dioxane mixtures,” J. Phys. Chem. A 111, 2043-2046 (2007). [CrossRef] [PubMed]
  43. P. M. Gross, Jr. and R. C. Taylor, “The dielectric constants of water, hydrogen peroxide, and hydrogen peroxide-water mixtures,” J. Am. Chem. Soc. 72, 2075-2080 (1950). [CrossRef]
  44. A. K. Lyaschenko, V. S. Goncharov, and P. S. Yastremskii, “Structure and dielectric properties of aqueous solutions of hydrogen peroxide,” J. Struct. Chem. 17, 871-876 (1976). [CrossRef]
  45. A. A. Potapov and I. Yu. Parkhomenko, “Dielectric properties of solutions isomorphous with water,” Russian J. Gen. Chem. 75, 34-39 (2005). [CrossRef]
  46. D. C. Sorescu, B. M. Rice, and D. L. Thompson, “Molecular dynamics simulations of liquid nitromethane,” J. Phys. Chem. A 105, 9336-9346 (2001). [CrossRef]
  47. H. E. Alper, F. Abu-Awwad, and P. Politzer, “Molecular dynamics simulations of liquid nitromethane,” J. Phys. Chem. B 103, 9738-9742 (1999). [CrossRef]
  48. V. V. Levin, E. A. Ovsoyan, and V. I. Ovchinnikov, “Dispersion of the dielectric constant of nitromethane,” Russian J. Phys. Chem. 45, 1333-1334 (1971).
  49. O.Madelung, ed. Numerical Data and Functional Relationships in Science and Technology, Vol. 6 of Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures (Springer, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited