OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: A14–A22

Angular dependence of terahertz emission from semiconductor surfaces photoexcited by femtosecond optical pulses

Ryotaro Inoue, Kazuhisa Takayama, and Masayoshi Tonouchi  »View Author Affiliations

JOSA B, Vol. 26, Issue 9, pp. A14-A22 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1765 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, the angular dependence of terahertz (THz) emission from semiconductor surfaces photoexcited by femtosecond optical pulses is reported. Time-domain waveforms of THz emission from (100) surfaces of semi-insulating gallium arsenide ( si - Ga As ) and p-type indium arsenide ( p - In As ) are measured at various angles after careful suppression of the nonlinear optical rectification effect. THz emission angle-frequency patterns under focusing conditions of the excitation beam are regarded as radiation from an electric dipole moment located on the semiconductor surface. Based on the experimental results in the magnetic field parallel to the semiconductor surface, we discuss the ultrafast carrier dynamics on the surfaces of both semiconductors.

© 2009 Optical Society of America

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(300.6495) Spectroscopy : Spectroscopy, teraherz
(240.6648) Optics at surfaces : Surface dynamics
(110.6915) Imaging systems : Time imaging

Original Manuscript: February 2, 2009
Revised Manuscript: April 12, 2009
Manuscript Accepted: April 17, 2009
Published: May 12, 2009

Ryotaro Inoue, Kazuhisa Takayama, and Masayoshi Tonouchi, "Angular dependence of terahertz emission from semiconductor surfaces photoexcited by femtosecond optical pulses," J. Opt. Soc. Am. B 26, A14-A22 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Y. Han and X.-C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12, 1747-1756 (2001). [CrossRef]
  2. C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. (Washington, D.C.) 104, 1759-1779 (2004).
  3. T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28, 2058-2060 (2003). [CrossRef] [PubMed]
  4. R. Inoue, N. Uchida, and M. Tonouchi, “Scanning probe laser terahertz emission microscopy system,” Jpn. J. Appl. Phys., Part 1 45, L824-L826 (2006). [CrossRef]
  5. J. N. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at GaAs surfaces,” Appl. Phys. Lett. 83, 5476-5478 (2003). [CrossRef]
  6. M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, “Polarity reversal of terahertz waves radiated from semi-insulating InP surfaces induced by temperature,” Phys. Rev. B 67, 195308 (2003). [CrossRef]
  7. M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005). [CrossRef]
  8. S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102-105 (1991). [CrossRef]
  9. X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326-338 (1992). [CrossRef]
  10. T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B 53, 4005-4014 (1996). [CrossRef]
  11. P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533-5537 (2002). [CrossRef]
  12. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002). [CrossRef]
  13. K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B 73, 155330 (2006). [CrossRef]
  14. K. J. Chau and A. Y. Elezzabi, “Two-dimensional drift-diffusion analysis of magnetic field enhanced THz emission from semiconductor surfaces,” Opt. Commun. 242, 295-304 (2004). [CrossRef]
  15. J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001). [CrossRef]
  16. M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006). [CrossRef]
  17. M. Nakajima, Y. Oda, T. Suemoto, and S. Saito, “Polarity reversal of the magnetic field induced component of terahertz radiation from InAs surfaces at high density excitation,” Appl. Phys. Lett. 85, 4597-4599 (2004). [CrossRef]
  18. H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from femtosecond-laser-irradiated InAs (100) surface,” Appl. Phys. Lett. 83, 1068-1070 (2003). [CrossRef]
  19. M. Migita and M. Hangyo, “Pump-power dependence of THz radiation from InAs surfaces under magnetic fields excited by ultrashort laser pulses,” Appl. Phys. Lett. 79, 3437-3439 (2001). [CrossRef]
  20. A. Corchia, R. McLaughlin, M. B. Johnston, D. M. Whittaker, D. D. Arnone, E. H. Linfield, A. G. Davis, and M. Pepper, “Effects of magnetic field and optical fluence on terahertz emission in gallium arsenide,” Phys. Rev. B 64, 205204 (2001). [CrossRef]
  21. W. van Roosbroeck, “Theory of the photomagnetic effect in semiconductors,” Phys. Rev. 101, 1713-1725 (1956). [CrossRef]
  22. J. R. Dixon, “Photoelectromagnetic effect in indium arsenide,” Phys. Rev. 107, 374-378 (1957). [CrossRef]
  23. N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84, 654-656 (1998). [CrossRef]
  24. C. Weiss, R. Wallenstein, and R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160-4162 (2000). [CrossRef]
  25. J. Shan, C. Weiss, R. Wallenstein, R. Beigang, and C. F. Heinz, “Origin of magnetic field enhancement in the generation of terahertz radiation from semiconductor surfaces,” Opt. Lett. 26, 849-851 (2001). [CrossRef]
  26. E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007). [CrossRef]
  27. R. Inoue, Y. Ohno, and M. Tonouchi, “Development of fiber-coupled compact terahertz time-domain spectroscopy imaging head,” Jpn. J. Appl. Phys., Part 1 45, 7928-7932 (2006). [CrossRef]
  28. J. Z. Xu and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett. 27, 1067-1069 (2002). [CrossRef]
  29. A. Sommerfeld, Ann. Phys. 28, 665-736 (1909). [CrossRef]
  30. H. Weyl, Ann. Phys. 81, 481-500 (1919). [CrossRef]
  31. J. A. Stratton, Electromagnetic Theory, Chap. 9 (McGraw-Hill, 1941).
  32. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69, 1495-1503 (1979). [CrossRef]
  33. X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62, 2003-2005 (1993). [CrossRef]
  34. J. D. Jackson, Classical Electrodynamics, Chap. 9 (Wiley, 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited