OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 1 — Jan. 1, 2010
  • pp: 148–167

Theory of confined plasmonic waves in coaxial cylindrical cables fabricated of metamaterials

M. S. Kushwaha and B. Djafari-Rouhani  »View Author Affiliations

JOSA B, Vol. 27, Issue 1, pp. 148-167 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (457 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the theoretical investigation of the plasmonic wave propagation in the coaxial cylindrical cables fabricated of both right-handed medium [with ϵ > 0 , μ > 0 ] and left-handed medium [with ϵ ( ω ) < 0 , μ ( ω ) < 0 ], using a Green’s-function (or a response function) theory in the absence of an applied magnetic field. The Green’s-function theory generalized to be applicable to such quasi-one-dimensional systems enables us to derive explicit expressions for the corresponding response functions (associated with the electromagnetic fields), which can in turn be used to derive various physical properties of the system. The confined plasmonic wave excitations in such multi-interface structures are characterized by the electromagnetic fields that are localized at and decay exponentially away from the interfaces. A rigorous analytical diagnosis of the general results in diverse situations leads us to reproduce exactly the previously well-known results in other geometries, obtained within the different theoretical frameworks. As an application, we present several illustrative examples on the dispersion characteristics of the confined (and extended) plasmonic waves in single- and double-interface structures made up of dispersive metamaterials interlaced with conventional dielectrics. These dispersive modes are also substantiated through the computation of local as well as total density of states. It is observed that the dispersive components enable the system to support the simultaneous existence of s- and p-polarization modes in the system. Such effects as this one are solely attributed to the negative-index metamaterials and are otherwise impossible. The readers will also notice the explicit μ-dependence of the dispersion relations for the s-polarization modes, obtained under special limits in some cases, for the single- and double-interface systems. The elegance of the theory lies in the fact that it does not require the matching of the boundary conditions and in its simplicity and the compact form of the desired (analytical) results.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: September 11, 2009
Revised Manuscript: October 26, 2009
Manuscript Accepted: November 5, 2009
Published: December 24, 2009

M. S. Kushwaha and B. Djafari-Rouhani, "Theory of confined plasmonic waves in coaxial cylindrical cables fabricated of metamaterials," J. Opt. Soc. Am. B 27, 148-167 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. For an extensive review of electronic, optical, and transport properties of systems of reduced dimensionality, such as quantum wells, wires, dots, and electrically/magnetically modulated 2D systems, see M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep. 41, 1-416 (2001). [CrossRef]
  2. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001). [CrossRef] [PubMed]
  5. J. Pacheco, T. M. Grzegorczyk, B. I. Wu, Y. Zhang, and J. A. Kong, “Power propagation in homogeneous isotropic frequency-dispersive left-handed media,” Phys. Rev. Lett. 89, 257401 (2002). [CrossRef] [PubMed]
  6. J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003). [CrossRef] [PubMed]
  7. D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. P. Vigneron, E. H. EL Boudouti, and A. Nougaoui, “Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials,” Phys. Rev. B 69, 066613 (2004). [CrossRef]
  8. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Complete band gaps in one-dimensional left-handed periodic structures,” Phys. Rev. Lett. 95, 193903 (2005). [CrossRef] [PubMed]
  9. N. C. Panoiu, R. M. Osgood, S. Zhang, and S. R. J. Brueck, “Zero-n bandgap in photonic crystal superlattices,” J. Opt. Soc. Am. B 23, 506-513 (2006). [CrossRef]
  10. B. Wood and J. B. Pendry, “Metamaterials at zero frequency,” J. Phys. Condens. Matter 19, 076208 (2007). [CrossRef] [PubMed]
  11. W. J. Hsueh, C. T. Chen, and C. H. Chen, “Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism,” Phys. Rev. A 78, 013836 (2008). [CrossRef]
  12. Y. Wu and Z. Q. Zhang, “Dispersion relations and their symmetry properties of electromagnetic and elastic metamaterials in two dimensions,” Phys. Rev. B 79, 195111 (2009). [CrossRef]
  13. R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61-64 (2000). [CrossRef]
  14. I. V. Shadrivov, A. A. Shukhorukov, and Y. S. Kivshar, “Guided modes in negative-refractive-index waveguides,” Phys. Rev. E 67, 057602 (2003). [CrossRef]
  15. S. A. Darmanyan, M. Neviere, and A. A. Zakhidov, “Surface modes at the interface of conventional and left-handed media,” Opt. Commun. 225, 233-240 (2003). [CrossRef]
  16. H. Cory and A. Barger, “Surface-wave propagation along a metamaterial slab,” Microwave Opt. Technol. Lett. 38, 392-395 (2003). [CrossRef]
  17. H. Cory and C. Zach, “Wave propagation in metamaterial multi-layered structures,” Microwave Opt. Technol. Lett. 40, 460-465 (2004). [CrossRef]
  18. Y. He, Z. Cao, and Q. Shen, “Guided optical modes in asymmetric left-handed waveguides,” Opt. Commun. 245, 125-135 (2005). [CrossRef]
  19. L. G. Wang, H. Chen, and S. Y. Zhu, “Wave propagation inside one-dimensional photonic crystals with single-negative materials,” Phys. Lett. A 350, 410-415 (2006). [CrossRef]
  20. Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133-11141 (2007). [CrossRef] [PubMed]
  21. Y. Fang and S. He, “Transparent structure consisting of metamaterial layers and matching layers,” Phys. Rev. A 78, 023813 (2008). [CrossRef]
  22. F. Tao, H. F. Zhang, X. H. Yang, and D. Cao, “Surface plasmon polaritons of the metamaterial four-layered structures,” J. Opt. Soc. Am. B 26, 50-59 (2009). [CrossRef]
  23. V. Kuzmiak and A. A. Maradudin, “Scattering properties of a cylinder fabricated from a left-handed material,” Phys. Rev. B 66, 045116 (2002). [CrossRef]
  24. N. C. Panoiu and R. M. Osgood, “Numerical investigation of negative refractive index metamaterials at infrared and optical frequencies,” Opt. Commun. 223, 331-337 (2003). [CrossRef]
  25. R. Ruppin, “Surface polaritons and extinction properties of a left-handed material cylinder,” J. Phys. Condens. Matter 16, 5991-5998 (2004). [CrossRef]
  26. S. Ancey, Y. Decanini, A. Folacci, and P. Gabrielli, “Surface polaritons on left-handed cylinders: a complex angular momentum analysis,” Phys. Rev. B 72, 085458 (2005). [CrossRef]
  27. H. Cory and T. Blum, “Surface-wave propagation along a metamaterial cylindrical guide,” Microwave Opt. Technol. Lett. 44, 31-35 (2005). [CrossRef]
  28. K. Y. Kim, J. H. Li, Y. K. Cho, and H. S. Tae, “Electromagnetic wave propagation through doubly dispersive subwavelength metamaterial hole,” Opt. Express 13, 3653-3665 (2005). [CrossRef] [PubMed]
  29. S. Arslanagic, R. W. Ziolkowski, and O. Breinbjerg, “Excitation of an electrically small metamaterial-coated cylinder by an arbitrarily located line source,” Microwave Opt. Technol. Lett. 48, 2598-2606 (2006). [CrossRef]
  30. E. Irci and V. K. Erturk, “Achieving transparency and maximizing scattering with metamaterial-coated conducting cylinders,” Phys. Rev. E 76, 056603 (2007). [CrossRef]
  31. K. Y. Kim, “Fundamental guided electromagnetic dispersion characteristics in lossless dispersive metamaterial clad circular air-hole waveguides,” J. Opt. A, Pure Appl. Opt. 9, 1062-1069 (2007). [CrossRef]
  32. S. Ahmed and Q. A. Naqvi, “Electromagnetic scattering from a perfect electromagnetic conductor circular cylinder coated with a metamaterial having negative permittivity and/or permeability,” Opt. Commun. 281, 5664-5670 (2008). [CrossRef]
  33. H. Y. She, L. W. Li, O. J. F. Martin, and J. R. Mosig, “Surface polaritons of small coated cylinders illuminated by normal incident TM and TE plane waves,” Opt. Express 16, 1007-1019 (2008). [CrossRef] [PubMed]
  34. C. Garcia-Meca, R. Ortuno, F. J. Rodriguez, J. Marti, and A. Martinez, “Negative refractive index metamaterials aided by extraordinary optical transmission,” Opt. Express 17, 6026-6031 (2009). [CrossRef] [PubMed]
  35. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450, 397-401 (2007). [CrossRef] [PubMed]
  36. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008). [CrossRef] [PubMed]
  37. M. G. Silveirinha, “Anomalous refraction of light colors by a metamaterial prism,” Phys. Rev. Lett. 102, 193903 (2009). [CrossRef] [PubMed]
  38. J. B. Pendry and D. R. Smith, “Reversing light with negative refraction,” Phys. Today 57(6), 37-44 (2004). [CrossRef]
  39. A. D. Boardman, N. King, and L. Velasco, “Negative refraction in perspective,” Electromagnetics 25, 365-389 (2005). [CrossRef]
  40. T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998). [CrossRef]
  41. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  42. L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  43. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601-5603 (2001). [CrossRef] [PubMed]
  44. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004). [CrossRef] [PubMed]
  45. D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425-1427 (1999). [CrossRef]
  46. F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002). [CrossRef] [PubMed]
  47. J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004). [CrossRef] [PubMed]
  48. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006). [CrossRef] [PubMed]
  49. Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008). [CrossRef]
  50. A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96, 073904 (2006). [CrossRef] [PubMed]
  51. A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “Coupled surface-plasmon-like modes between metamaterial,” Phys. Rev. B 76, 165431 (2007). [CrossRef]
  52. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102, 073901 (2009). [CrossRef] [PubMed]
  53. L. Dobrzynski, “Interface response theory of discrete composite systems,” Surf. Sci. Rep. 6, 119-157 (1986). [CrossRef]
  54. L. Dobrzynski and H. Puszkarski, “Eigenvectors of composite systems. I. General theory,” J. Phys. Condens. Matter 1, 1239-1245 (1989). [CrossRef]
  55. M. S. Kushwaha and B. Djafari-Rouhani, “Theory of magnetoplasmons in semiconductor superlattices in the Voigt geometry: a Green-function approach,” Phys. Rev. B 43, 9021-9032 (1991). [CrossRef]
  56. B. Djafari-Rouhani and L. Dobrzynski, “Acoustic resonances of adsorbed wires and channels,” J. Phys. Condens. Matter 5, 8177-8194 (1993). [CrossRef]
  57. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953), Vol. I, Chap. 7.
  58. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972).
  59. See, for example, R. Ruppin, in Electromagnetic Surface Modes, A.D.Boardman, ed. (Wiley, 1982), pp. 345-398.
  60. J. Wang and J. P. Leburton, “Plasmon dispersion relation of a quasi-one-dimensional electron gas,” Phys. Rev. B 41, 7846-7849 (1990). [CrossRef]
  61. Q. P. Li and S. Das Sarma, “Elementary excitation spectrum of one-dimensional electron systems in confined semiconductor structures: zero magnetic field,” Phys. Rev. B 43, 11768-11786 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited