OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 1 — Jan. 1, 2010
  • pp: 27–31

Scheme for implementing linear optical quantum iSWAP gate with conventional photon detectors

Hong-Fu Wang, Xiao-Qiang Shao, Yong-Fang Zhao, Shou Zhang, and Kyu-Hwang Yeon  »View Author Affiliations

JOSA B, Vol. 27, Issue 1, pp. 27-31 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (125 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple scheme is proposed to implement a two-qubit linear optical quantum iSWAP gate that is a universal gate in quantum computation and quantum information processing. By the interference effect of the polarized photons, a quantum iSWAP gate can be achieved with a low success probability ( η 4 32 , with η being the quantum efficiency of photon detectors). The scheme is based only on simple linear optical elements, a pair of two-photon polarization entangled states, and conventional photon detectors that only distinguish the vacuum and nonvacuum Fock number states, which greatly decreases the experimental difficulty of implementing linear optical quantum computation.

© 2009 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: August 25, 2009
Revised Manuscript: October 28, 2009
Manuscript Accepted: November 2, 2009
Published: December 11, 2009

Hong-Fu Wang, Xiao-Qiang Shao, Yong-Fang Zhao, Shou Zhang, and Kyu-Hwang Yeon, "Scheme for implementing linear optical quantum iSWAP gate with conventional photon detectors," J. Opt. Soc. Am. B 27, 27-31 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. W. Shor, “Algorithms for quantum computer computation: discrete logarithms and factoring,” in Proceedings of the Symposium on the Foundations of Computer Science, Los Alamitos, California (IEEE, 1994), pp. 124-134.
  2. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325-328 (1997). [CrossRef]
  3. M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, “Tight bounds on quantum searching,” Fortschr. Phys. 46, 493-505 (1998). [CrossRef]
  4. A. Y. Kitaev, “Quantum measurements and the abelian stabilizer problem,” ArXiv.org e-print, 9511026, 1995, http://arxiv.org/abs/9511026.
  5. D. Simon, “On the power of quantum computation,” in Proceedings of the Symposium on the Foundations of Computer Science, Los Alamitos, California (IEEE, 1994), pp. 116-123.
  6. R. Jozsa, “Quantum algorithms and the Fourier transform,” ArXiv.org e-print, 9707033, 1997, http://arxiv.org/abs/9707033.
  7. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166-5169 (1999). [CrossRef]
  8. D. Gottesman and I. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390-393 (1999). [CrossRef]
  9. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392-2395 (2000). [CrossRef] [PubMed]
  10. C. Y. Chen, M. Feng, and K. L. Gao, “Toffoli gate originating from a single resonant interaction with cavity QED,” Phys. Rev. A 73, 064304 (2006). [CrossRef]
  11. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001). [CrossRef]
  12. X. B. Zou, S. L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007). [CrossRef]
  13. X. B. Zou, K. Li, and G. C. Guo, “Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate,” Phys. Rev. A 74, 044305 (2006). [CrossRef]
  14. A. M. Childs, I. L. Chuang, and D. W. Leung, “Realization of quantum process tomography in NMR,” Phys. Rev. A 64, 012314 (2001). [CrossRef]
  15. N. Schuch and J. Siewert, “Natural two-qubit gate for quantum computation using the XY interaction,” Phys. Rev. A 67, 032301 (2003). [CrossRef]
  16. T. Tanamoto, K. Maruyama, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient purification protocols using iSWAP gates in solid-state qubits,” Phys. Rev. A 78, 062313 (2008). [CrossRef]
  17. T. Tanamoto, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient quantum circuits for one-way quantum computing,” Phys. Rev. Lett. 102, 100501 (2000). [CrossRef]
  18. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999). [CrossRef]
  19. S. M. Barnett, L. S. Phillips, and D. T. Pegg, “Imperfect photodetection as projection onto mixed states,” Opt. Commun. 158, 45-49 (1998). [CrossRef]
  20. S. Glancy, J. M. LoSecco, H. M. Vasconcelos, and C. E. Tanner, “Imperfect detectors in linear optical quantum computers,” Phys. Rev. A 65, 062317 (2002). [CrossRef]
  21. Z. Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54-57 (1988). [CrossRef] [PubMed]
  22. F. DeMartini, G. DiGiuseppe, and M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900-903 (1996). [CrossRef]
  23. H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691-695 (1977). [CrossRef]
  24. S. Brattke, B. T. H. Varcoe, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett. 86, 3534-3537 (2001). [CrossRef] [PubMed]
  25. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968-970 (2000). [CrossRef] [PubMed]
  26. J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500-503 (1999). [CrossRef]
  27. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006). [CrossRef] [PubMed]
  28. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513-2516 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited