OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 1 — Jan. 1, 2010
  • pp: 72–84

Mimicking a negative refractive slab by combining two phase conjugators

Alexandre Aubry and J. B. Pendry  »View Author Affiliations


JOSA B, Vol. 27, Issue 1, pp. 72-84 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000072


View Full Text Article

Enhanced HTML    Acrobat PDF (551 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new route toward a lossless superlens has been proposed recently. It relies on the association of two phase-conjugating sheets. The aim of this study is to show how such a lens can be implemented experimentally at optical frequencies. Because efficient phase conjugation of evanescent waves is illusory with the current technology, only the case of propagating waves is considered here. Four wave mixing in BaTiO 3 is shown to provide efficient backward and forward phase conjugation over a major part of the angular spectrum, taking advantage of internal reflections inside the non-linear slab. However, phase distortions arise for high spatial frequencies and limit the resolving power of the device. The addition of a second phase-conjugator automatically compensates for these phase distortions. The wave field is then perfectly translated through the system. Actually, such a device performs even better than a negative refracting lens since the association of two phase-conjugating mirrors behaves like a resonant cavity. An amplification of the wave field by a factor of 10 2 in intensity is predicted, despite the important absorption in BaTiO 3 .

© 2009 Optical Society of America

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5040) Nonlinear optics : Phase conjugation

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 11, 2009
Revised Manuscript: November 3, 2009
Manuscript Accepted: November 6, 2009
Published: December 18, 2009

Citation
Alexandre Aubry and J. B. Pendry, "Mimicking a negative refractive slab by combining two phase conjugators," J. Opt. Soc. Am. B 27, 72-84 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-1-72


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  2. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449-521 (2005). [CrossRef]
  3. C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative-index materials: new frontiers in optics,” Adv. Mater. 18, 1941-1952 (2006). [CrossRef]
  4. G. V. Eleftheriades and K. G. Balmain, Negative-Refraction Metamaterials: Fundamental Principles and Applications (Wiley-IEEE, 2005). [CrossRef]
  5. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  6. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004). [CrossRef] [PubMed]
  7. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005). [CrossRef] [PubMed]
  8. J. T. Shen and P. M. Platzman, “Near field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, 3286-3288 (2002). [CrossRef]
  9. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506-1508 (2003). [CrossRef]
  10. Z. Ye, “Optical transmission and reflection of perfect lenses by left handed materials,” Phys. Rev. B 67, 193106 (2003). [CrossRef]
  11. J. B. Pendry, “Time reversal and negative refraction,” Science 322, 71-73 (2008). [CrossRef] [PubMed]
  12. M. Nieto-Vesperinas and E. Wolf, “Phase conjugation and symmetries with wave fields in free space containing evanescent components,” J. Opt. Soc. Am. A 2, 1429-1434 (1985). [CrossRef]
  13. S. Maslovski and S. Tretyakov, “Phase conjugation and perfect lensing,” J. Appl. Phys. 94, 4241-4243 (2003). [CrossRef]
  14. S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, “Phase conjugation of an optical near field,” Opt. Lett. 19, 1601-1603 (1994). [CrossRef] [PubMed]
  15. S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, “Scattered light enhancement near a phase conjugating mirror,” Opt. Commun. 115, 115-120 (1995). [CrossRef]
  16. B. Vohnsen and S. I. Bozhevolnyi, “Near-field optical microscopy with a phase-conjugating mirror,” Opt. Commun. 148, 331-337 (1998). [CrossRef]
  17. M. Born and E. Wolf, Principle of Optics (Pergamon, 1980).
  18. A. L. Pokrovsky and A. L. Efros, “Diffraction theory and focusing of light by a slab of left-handed material,” Physica B 338, 333-337 (2003). [CrossRef]
  19. R. W. Hellwarth, “Generation of time-reversed wave fronts by nonlinear refraction,” J. Opt. Soc. Am. 67, 1-3 (1977). [CrossRef]
  20. A. Yariv, “Phase conjugation,” IEEE J. Quantum Electron. 14, 650-660 (1978). [CrossRef]
  21. R. Fisher, Optical Phase Conjugation (Academic, 1984).
  22. G. S. He, “Optical phase conjugation: principles, techniques, and applications,” Prog. Quantum Electron. 26, 131-191 (2002). [CrossRef]
  23. D. M. Bloom and G. C. Bjorklund, “Conjugate wave-front generation and image reconstruction by four-wave mixing,” Appl. Phys. Lett. 31, 592-594 (1977). [CrossRef]
  24. D. M. Bloom, P. F. Liao, and N. P. Economou, “Observation of amplified reflection by degenerate four-wave mixing in atomic sodium vapor,” Opt. Lett. 2, 58-60 (1978). [CrossRef] [PubMed]
  25. D. M. Pepper, D. Fekete, and A. Yariv, “Observation of amplified phase-conjugate reflection and optical parametric oscillation by degenerate four-wave mixing in a transparent medium,” Appl. Phys. Lett. 33, 41-44 (1978). [CrossRef]
  26. D. Fekete, J. C. AuYeung, and A. Yariv, “Phase-conjugate reflection by degenerate four-wave mixing in a nematic liquid crystal in the isotropic phase,” Opt. Lett. 5, 51-53 (1980). [CrossRef] [PubMed]
  27. R. L. Abrams and R. C. Lind, “Degenerate four wave mixing in absorbing media,” Opt. Lett. 2, 94-96 (1978). [CrossRef] [PubMed]
  28. A. Tomita, “Phase conjugation using gain saturation of a Nd:YAG laser,” Appl. Phys. Lett. 34, 463-464 (1979). [CrossRef]
  29. R. A. Fisher and B. J. Feldman, “On-resonant phase-conjugate reflection and amplification at 10.6 μm in inverted CO2,” Opt. Lett. 4, 140-142 (1979). [CrossRef] [PubMed]
  30. Y. Silberberg and I. Bar-Joseph, “Low power phase conjugation in thin films of saturable absorbers,” Opt. Commun. 39, 265-268 (1981). [CrossRef]
  31. G. J. Crofts, R. P. M. Green, and M. J. Damzen, “Investigation of multipass geometries for efficient degenerate four-wave mixing in Nd:YAG,” Opt. Lett. 17, 920-922 (1992). [CrossRef] [PubMed]
  32. M. J. Damzen, R. P. M. Green, and G. J. Crofts, “High-reflectivity four-wave mixing by gain saturation of nanosecond and microsecond radiation in Nd:YAG,” Opt. Lett. 17, 1331-1333 (1992). [CrossRef] [PubMed]
  33. K. S. Syed, G. J. Crofts, R. P. M. Green, and M. J. Damzen, “Vectorial phase conjugation via four-wave mixing in isotropic saturable-gain media,” J. Opt. Soc. Am. B 14, 2067-2078 (1997). [CrossRef]
  34. J. Feinberg, D. Heiman, J. A. R. Tanguay, and R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297-1305 (1980). [CrossRef]
  35. J. P. Huignard, J. P. Herriau, P. Aubourg, and E. Spitz, “Phase-conjugate wavefront generation via real-time holography in Bi12SiO20 crystals,” Opt. Lett. 4, 21-23 (1979). [CrossRef] [PubMed]
  36. J. Feinberg and R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5, 519-521 (1980). [CrossRef] [PubMed]
  37. J. O. White, M. Cronin-Golomb, B. Fischer, and A. Yariv, “Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450-452 (1982). [CrossRef]
  38. M. Cronin-Golomb, B. Fisher, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12-30 (1984). [CrossRef]
  39. P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications I (Springer-Verlag, 1988).
  40. A. Khyznika, V. Kondilenko, Y. Kucherov, S. Lesnik, S. Odoulov, and M. Soskin, “Phase conjugation by degenerate forward four-wave mixing,” J. Opt. Soc. Am. A 1, 169-175 (1984). [CrossRef]
  41. P. V. Avizonis, F. A. Hopf, W. D. Bomberger, S. F. Jacobs, A. Tomita, and K. H. Womack, “Optical phase conjugation in a lithium formate crystal,” Appl. Phys. Lett. 31, 435-437 (1977). [CrossRef]
  42. L. Lefort and A. Barthelemy, “Revisiting optical phase conjugation by difference-frequency generation,” Opt. Lett. 21, 848-850 (1996). [CrossRef] [PubMed]
  43. A. Bledowski, W. Krolikowski, and A. Kujawski, “Forward phase-conjugate wave in four-wave mixing in photorefractive media,” Opt. Commun. 61, 71-74 (1987). [CrossRef]
  44. S. H. Tang, X. H. He, and H.-Y. Zhang, “Experimental study of the forward phase-conjugate wave in degenerate four-wave mixing in LiNbO3:Fe,” J. Eur. Opt. Soc. Part B 3, 179-183 (1991). [CrossRef]
  45. F. Wang, L. Liu, and G. Li, “Self-pumped forward and backward phase conjugator with Cu-doped KNSBN crystal: caused by scattering-oscillation-amplification,” Quantum Opt. 134, 195-198 (1997). [CrossRef]
  46. A. Yariv, Quantum Electronics (Wiley, 1989).
  47. M. Saito, A. Okamoto, K. Sato, and Y. Takayama, “Phase matching property of cross polarization four wave mixing in BaTiO3 crystal,” Opt. Rev. 4, 686-690 (1997). [CrossRef]
  48. M. Zgonik, K. Nakagawa, and P. Günter, “Electro-optic and dielectric properties of photorefractive BaTiO3 and KNbO3,” J. Opt. Soc. Am. B 12, 1416-1421 (1995). [CrossRef]
  49. M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941-5949 (1994). [CrossRef]
  50. S.-C. D. L. Cruz, S. MacCormack, J. Feinberg, Q. B. He, H.-K. Liu, and P. Yeh, “Effect of beam coherence on mutually pumped phase conjugators,” J. Opt. Soc. Am. B 12, 1363-1369 (1995). [CrossRef]
  51. N. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskinand, and V. L. Vinetskii, “Holographic storage ion electro-optic crystals. I. Steady-state,” Ferroelectrics 22, 949-960 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited