OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2151–2158

Transmission through a metallic photonic crystal immersed in a coherent atomic gas

Andriy E. Serebryannikov and Akhlesh Lakhtakia  »View Author Affiliations

JOSA B, Vol. 27, Issue 10, pp. 2151-2158 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (427 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The electromagnetic transmission, reflection, and absorption characteristics of two-dimensional metallic photonic crystals with a coherent atomic gas as the host medium were systematically studied, with emphasis on the appearance and features of mini passbands within bandgaps of the unfilled (gas-free) crystals. Only normally incident s-polarized plane waves were considered. The mini passbands are connected with strong frequency dispersion of the relative permittivity of the host gas, being highly variable for a certain narrow regime of frequencies. Transmission effects similar to those connected with defect modes can appear in photonic crystals, which are associated with localization of dispersion in the frequency domain rather than with spatial localization of the field at structural defects. In addition, analogy with Fabry–Perot resonances is possible within the new bands. Their locations can be strongly sensitive to a variation of gas parameters so that they can be efficiently tuned at fixed frequency. Also, the occurrence of high-absorbance bands can be correlated with the frequency-dependent properties of the metal and the coherent atomic gas. Finally, the energy of the incident wave can be distributed in a desired proportion between either transmittance or reflectance on one hand and absorbance on the other.

© 2010 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(020.1335) Atomic and molecular physics : Atom optics
(160.5298) Materials : Photonic crystals

ToC Category:
Atomic and Molecular Physics

Original Manuscript: June 10, 2010
Manuscript Accepted: August 9, 2010
Published: September 29, 2010

Andriy E. Serebryannikov and Akhlesh Lakhtakia, "Transmission through a metallic photonic crystal immersed in a coherent atomic gas," J. Opt. Soc. Am. B 27, 2151-2158 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Figotin, Y. A. Godin, and I. Vitebsky, “Two-dimensional tunable photonic crystals,” Phys. Rev. B 57, 2841–2848 (1998). [CrossRef]
  2. F. Glöckler, S. Peters, U. Lemmer, and M. Gerken, “Tunable superprism effect in photonic crystals,” Phys. Status Solidi A 204, 3790–3804 (2007). [CrossRef]
  3. G. Alagappan, X. W. Sun, P. Shum, M. B. Yu, and M. T. Doan, “One-dimensional anisotropic photonic crystal with a tunable bandgap,” J. Opt. Soc. Am. B 23, 159–167 (2006). [CrossRef]
  4. F. Wang and A. Lakhtakia, “Magnetically controllable intra-Brillouin-zone band gaps in one-dimensional helicoidal magnetophotonic crystals,” Phys. Rev. B 79, 193102 (2009). [CrossRef]
  5. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006). [CrossRef]
  6. J. Li, M.-H. Lu, L. Feng, X.-P. Liu, and Y.-F. Chen, “Tunable negative refraction based on the Pockels effect in two-dimensional photonic crystals composed of electro-optic crystals,” J. Appl. Phys. 101, 013516 (2007). [CrossRef]
  7. K. L. Jim, D. Y. Wang, C. W. Leung, C. L. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103, 083107 (2008). [CrossRef]
  8. P. Jiang, C. Ding, X. Hu, and Q. Gong, “Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals,” Phys. Lett. A 363, 332–336 (2007). [CrossRef]
  9. M. Schmidt, M. Eich, U. Huebner, and R. Boucher, “Electro-optically tunable photonic crystals,” Appl. Phys. Lett. 87, 121110 (2005). [CrossRef]
  10. K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999). [CrossRef]
  11. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999). [CrossRef]
  12. E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665 (2005). [CrossRef]
  13. D. McPhail, M. Straub, and M. Gu, “Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals,” Appl. Phys. Lett. 86, 051103 (2005). [CrossRef]
  14. H. Takeda and K. Yoshino, “Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature semiconductors,” Phys. Rev. B 67, 245109 (2003). [CrossRef]
  15. C. Xu, X. Hu, Z. Li, X. Liu, R. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B 68, 193201 (2003). [CrossRef]
  16. J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34, 1465–1467 (2009). [CrossRef] [PubMed]
  17. H. Chen, C. T. Chan, S. Liu, and Z. Lin, “A simple route to a tunable electromagnetic gateway,” New J. Phys. 11, 083012 (2009). [CrossRef]
  18. F. Wang, A. Lakhtakia, and R. Messier, “On piezoelectric control of the optical response of sculptured thin films,” J. Mod. Opt. 50, 239–249 (2003).
  19. W. Park and J.-B. Lee, “Mechanically tunable photonic crystals,” Opt. Photonics News 20(1), 40–45 (2009). [CrossRef]
  20. J. H. Wu, L. K. Ang, A. Q. Liu, H. G. Teo, and C. Lu, “Tunable high-Q photonic-bandgap Fabry–Perot resonator,” J. Opt. Soc. Am. B 22, 1770–1777 (2005). [CrossRef]
  21. A. Lakhtakia and S. A. Ramakrishna, “Narrowband enhancement of the circular Bragg phenomenon by stimulated Raman scattering,” J. Opt. 12, 085101 (2010). [CrossRef]
  22. A. Lakhtakia and S. A. Ramakrishna, “Erratum: Narrowband enhancement of the circular Bragg phenomenon by stimulated Raman scattering,” J. Opt. 12, 089802 (2010). [CrossRef]
  23. S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, “Coherently controlling metamaterials,” Opt. Express 16, 19504–19511 (2008). [CrossRef] [PubMed]
  24. H. Wanare, “Controlling electromagnetic metamaterials,” J. Nanophotonics 4, 040304 (2010). [CrossRef]
  25. T. Magath and A. E. Serebryannikov, “Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs,” J. Opt. Soc. Am. A 22, 2405–2418 (2005). [CrossRef]
  26. D.Maystre, ed., Selected Papers on Diffraction Gratings (SPIE, 1993).
  27. A. E. Serebryannikov and T. Magath, “Controlling location of opaque ranges in transmission of metallic photonic crystals,” Phys. Rev. A 76, 033828 (2007). [CrossRef]
  28. A. E. Serebryannikov, T. Magath, and K. Schuenemann, “Bragg transmittance of s-polarized waves through finite-thickness photonic crystals with a periodically corrugated interface,” Phys. Rev. E 74, 066607 (2006). [CrossRef]
  29. S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990). [CrossRef] [PubMed]
  30. K. J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991). [CrossRef] [PubMed]
  31. J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998). [CrossRef]
  32. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997), Sec. 7.3.
  33. We thank the authors of for supplying us typical data on helium used in this paper.
  34. H. A. Haus and C. V. Shank, “Asymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976). [CrossRef]
  35. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994). [CrossRef]
  36. T. G. Mackay and A. Lakhtakia, “A limitation of the Bruggeman formalism for homogenization,” Opt. Commun. 234, 35–42 (2004); Erratum: A limitiation of the Bruggeman formalism for homogenization 282, 4028–4028 (2009). [CrossRef]
  37. A. J. Duncan, T. G. Mackay, and A. Lakhtakia, “On the Bergman–Milton bounds for the homogenization of dielectric composite materials,” Opt. Commun. 271, 470–474 (2007). [CrossRef]
  38. A. Mejdoubi and C. Brosseau, “Intrinsic electrostatic resonances of heterostructures with negative permittivity from finite-element calculations: Application to core-shell inclusions,” J. Appl. Phys. 102, 094104 (2007). [CrossRef]
  39. C. Fourn and C. Brosseau, “Electrostatic resonances of heterostructures with negative permittivity: Homogenization formalisms versus finite-element modeling,” Phys. Rev. E 77, 016603 (2008). [CrossRef]
  40. T. G. Mackay and A. Lakhtakia, “On the application of homogenization formalisms to active dielectric composite materials,” Opt. Commun. 282, 2470–2475 (2009). [CrossRef]
  41. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2005).
  42. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Sec. 7.6.1.
  43. P. Swab, S. V. Krishnaswamy, and R. Messier, “Characterization of black Ge solar selective absorbers,” J. Vac. Sci. Technol. 17, 362–365 (1980). [CrossRef]
  44. R. Messier, S. V. Krishnaswamy, L. R. Gilbert, and P. Swab, “Black a-Si selective absorber surfaces,” J. Appl. Phys. 51, 1611–1614 (1980). [CrossRef]
  45. E. Schubert, “Sub-wavelength antireflection coatings from nanostructure sculptured thin films,” Contrib. Plasma Phys. 47, 545–550 (2007). [CrossRef]
  46. M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33, 2527–2529 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited