OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2174–2179

Annular light beams induced by coupling a dissipative spatial soliton on the top of a sharp external potential

Yingji He, Dumitru Mihalache, and Bambi Hu  »View Author Affiliations


JOSA B, Vol. 27, Issue 11, pp. 2174-2179 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002174


View Full Text Article

Enhanced HTML    Acrobat PDF (664 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically reveal the rich dynamics of a two-dimensional fundamental soliton coupled on the top of a sharp external potential in dissipative nonlinear media based on the cubic-quintic complex Ginzburg–Landau model. Here, we consider two kinds of radially symmetric potentials, namely, a tapered potential (TP) and a raised-cosine potential (RCP). It is found that if the sharpness and depth of the potential are large enough, the soliton can emit either one annular beam or a cluster of ring-like beams, all of which gradually expand upon propagation. By using the TP, one can get a nonstationary annular beam, while a single stationary annular beam can be achieved by using the RCP. The radius of the stationary annular beam is controllable by the modulation period of the potential. Other soliton dynamics, including soliton localization, soliton oscillation, lateral drift, soliton collapse, and soliton decay, are also revealed. The reported results provide what we believe to be a new method to generate annular beams in dissipative systems.

© 2010 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 3, 2010
Revised Manuscript: August 25, 2010
Manuscript Accepted: August 26, 2010
Published: October 7, 2010

Citation
Yingji He, Dumitru Mihalache, and Bambi Hu, "Annular light beams induced by coupling a dissipative spatial soliton on the top of a sharp external potential," J. Opt. Soc. Am. B 27, 2174-2179 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-11-2174


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74, 99–143 (2002). [CrossRef]
  2. N. N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer-Verlag, 2002).
  3. B. A. Malomed, “Complex Ginzburg–Landau equation,” in Encyclopedia of Nonlinear Science, A.Scott, ed. (Routledge, 2005), pp. 157–160.
  4. B. A. Malomed, “Solitary pulses in linearly coupled Ginzburg–Landau equations,” Chaos 17, 037117 (2007). [CrossRef] [PubMed]
  5. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Spatiotemporal optical solitons in nonlinear dissipative media: From stationary light bullets to pulsating complexes,” Chaos 17, 037112 (2007). [CrossRef] [PubMed]
  6. F. T. Arecchi, S. Boccaletti, and P. Ramazza, “Pattern formation and competition in nonlinear optics,” Phys. Rep. 318, 1–83 (1999). [CrossRef]
  7. P. Mandel and M. Tlidi, “Transverse dynamics in cavity nonlinear optics,” J. Opt. B: Quantum Semiclassical Opt. 6, R60–R75 (2004). [CrossRef]
  8. N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Universal properties of self-organized localized structures,” Appl. Phys. B 81, 937–943 (2005). [CrossRef]
  9. N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996). [CrossRef]
  10. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008). [CrossRef]
  11. N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Vol. 661 of Lecture Notes in Physics (Springer, 2005). [CrossRef]
  12. B. A. Malomed, “Bound solitons in the nonlinear Schrödinger–Ginzburg–Landau equation,” Phys. Rev. A 44, 6954–6957 (1991). [CrossRef] [PubMed]
  13. D. V. Skryabin and A. G. Vladimirov, “Vortex-induced rotation of clusters of localized states in the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 89, 044101 (2002). [CrossRef] [PubMed]
  14. Y. J. He, H. H. Fan, J. W. Dong, and H. Z. Wang, “Self-trapped spatiotemporal necklace-ring solitons in the Ginzburg–Landau equation,” Phys. Rev. E 74, 016611 (2006). [CrossRef]
  15. Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009). [CrossRef] [PubMed]
  16. L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg–Landau equation,” Phys. Rev. E 63, 016605 (2001). [CrossRef]
  17. D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006). [CrossRef] [PubMed]
  18. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007). [CrossRef]
  19. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability limits for three-dimensional vortex solitons in the Ginzburg–Landau equation with the cubic-quintic nonlinearity,” Phys. Rev. A 76, 045803 (2007). [CrossRef]
  20. Y. He, B. A. Malomed, D. Mihalache, F. Ye, and B. Hu, “Generation of arrays of spatiotemporal dissipative solitons by the phase modulation of a broad beam,” J. Opt. Soc. Am. B 27, 1266–1271 (2010). [CrossRef]
  21. H. Sakaguchi and B. A. Malomed, “Two-dimensional dissipative gap solitons,” Phys. Rev. E 80, 026606 (2009). [CrossRef]
  22. H. Leblond, B.A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg–Landau model of a two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80, 033835 (2009). [CrossRef]
  23. Y.-J. He, B. A. Malomed, F. Ye, and B. Hu, “Dynamics of dissipative spatial solitons over a sharp potential,” J. Opt. Soc. Am. B 27, 1139–1142 (2010). [CrossRef]
  24. B. Liu, Y.-J. He, B. A. Malomed, X.-S. Wang, P. G. Kevrekidis, T.-B. Wang, F.-C. Leng, Z.-R. Qiu, and H.-Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35, 1974–1976 (2010). [CrossRef] [PubMed]
  25. J. M. Soto-Crespo, N. Akhmediev, C. Mejía-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17, 4236–4250 (2009). [CrossRef] [PubMed]
  26. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61–68 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited