OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2218–2223

On surface plasmon-polariton waves guided by the interface of a metal and a rugate filter with a sinusoidal refractive-index profile

Muhammad Faryad and Akhlesh Lakhtakia  »View Author Affiliations


JOSA B, Vol. 27, Issue 11, pp. 2218-2223 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002218


View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The canonical boundary-value problem of wave propagation guided by the planar interface of an isotropic homogeneous metal and a dielectric rugate filter with a refractive index that varies periodically normal to the interface may admit more than one solution, at a specific frequency. The different solutions indicate surface plasmon-polariton (SPP) waves that differ in phase speed, attenuation rate, linear polarization state, and field distribution. The multiplicity of SPP waves can only be attributed to the periodic nonhomogeneity of the rugate filter.

© 2010 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 15, 2010
Manuscript Accepted: August 29, 2010
Published: October 11, 2010

Citation
Muhammad Faryad and Akhlesh Lakhtakia, "On surface plasmon-polariton waves guided by the interface of a metal and a rugate filter with a sinusoidal refractive-index profile," J. Opt. Soc. Am. B 27, 2218-2223 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-11-2218


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Lieterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. (Leipzig) 23, 846–866 (1907).
  2. A. Sommerfeld, “Über die Ausbreitung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. (Leipzig) 28, 665–736 (1909).
  3. D. A. Hill and J. R. Wait, “On the excitation of the Zenneck surface wave over the ground at 10 MHz,” Ann. Telecommun. 35, 179–182 (1980).
  4. V. N. Datsko and A. A. Kopylov, “On surface electromagnetic waves,” Sov. Phys. Usp. 51, 101–102 (2008). [CrossRef]
  5. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  6. M. Dragoman and D. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1–41 (2008). [CrossRef]
  7. M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22, 143201 (2010). [CrossRef]
  8. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. (2010), doi:10.1002/lpor.200900055. [CrossRef]
  9. J. A. Polo, Jr. and A. Lakhtakia, “Surface electromagnetic waves: A review,” Laser Photonics Rev. (2010), doi:10.1002/lpor.200900050. [CrossRef]
  10. J.Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006). [CrossRef]
  11. I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: A mini-review,” Electromagnetics 28, 214–242 (2008). [CrossRef]
  12. S. J. Elston and J. R. Sambles, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mod. Opt. 37, 1895–1902 (1990). [CrossRef]
  13. R. A. Depine and M. L. Gigli, “Excitation of surface plasmons and total absorption of light at the flat boundary between a metal and a uniaxial crystal,” Opt. Lett. 20, 2243–2245 (1995). [CrossRef] [PubMed]
  14. H. Wang, “Excitation of surface plasmon oscillations at an interface between anisotropic dielectric and metallic media,” Opt. Mater. 4, 651–656 (1995). [CrossRef]
  15. I. Abdulhalim, “Surface plasmon TE and TM waves at the anisotropic film-metal interface,” J. Opt. A, Pure Appl. Opt. 11, 015002 (2009). [CrossRef]
  16. T. G. Mackay and A. Lakhtakia, “Modeling columnar thin films as platforms for surface-plasmonic-polaritonic optical sensing,” Photonics Nanostruct. Fundam. Appl. 8, 140–149 (2010). [CrossRef]
  17. J. A. Polo, Jr. and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. London, Ser. A 465, 87–107 (2009). [CrossRef]
  18. M. Faryad, J. A. Polo, Jr., and A. Lakhtakia, “Multiple trains of same-color of surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part IV: Canonical problem,” J. Nanophotonics 4, 043505 (2010). [CrossRef]
  19. J. A. Polo, Jr. and A. Lakhtakia, “Energy flux in a surface-plasmon-polariton wave bound to the planar interface of a metal and a structurally chiral material,” J. Opt. Soc. Am. A 26, 1696–1703 (2009). [CrossRef]
  20. Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009). [CrossRef]
  21. A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophotonics 3, 033506 (2009). [CrossRef]
  22. B. G. Bovard, “Rugate filter theory: an overview,” Appl. Opt. 32, 5427–5442 (1993). [CrossRef] [PubMed]
  23. P. W. Baumeister, Optical Coating Technology (SPIE, 2004), Sec. 5.3.3.2. [CrossRef]
  24. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005). [CrossRef]
  25. V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).
  26. A. Lakhtakia, “Reflection of an obliquely incident plane wave by a half space filled by a helicoidal bianisotropic medium,” Phys. Lett. A 374, 3887–3894 (2010). [CrossRef]
  27. M. Faryad and A. Lakhtakia, “Surface plasmon-polariton wave propagation guided by a metal slab in a sculptured nematic thin film,” J. Opt. 12, 085102 (2010). [CrossRef]
  28. Y. Jaluria, Computer Methods for Engineering (Taylor & Francis, 1996).
  29. Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipids film structure and properties,” Biophys. J. 73, 2791–2797 (1997). [CrossRef] [PubMed]
  30. Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and T.-Y. Chan, “Multilayered structures for p- and s-polarized long-range surface-plasmon-polariton propagation,” J. Opt. Soc. Am. A 26, 2600–2606 (2009). [CrossRef]
  31. A. Lakhtakia, “Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium,” Opt. Commun. 279, 291–297 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited