OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: B106–B118

X-ray free-electron lasers—present and future capabilities [Invited]

John N. Galayda, John Arthur, Daniel F. Ratner, and William E. White  »View Author Affiliations

JOSA B, Vol. 27, Issue 11, pp. B106-B118 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (952 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Linac Coherent Light Source is now in operation as an X-ray free-electron laser (FEL) user facility. It produces coherent pulses of 550 10,000 eV X-rays of duration adjustable from < 10  fs to 500  fs . Typical peak power is in excess of 20 GW . The facility will soon be joined by several X-ray FELs under construction around the world. This article will provide an abridged history of free-electron lasers, a description of some basic physics regarding free-electron laser light amplification, and an overview of the rapidly growing list of examples in which lasers will be used in the control and operation of X-ray FELs.

© 2010 Optical Society of America

OCIS Codes
(000.2690) General : General physics
(000.2850) General : History and philosophy
(000.3110) General : Instruments, apparatus, and components common to the sciences
(140.2600) Lasers and laser optics : Free-electron lasers (FELs)

Original Manuscript: July 23, 2010
Revised Manuscript: October 7, 2010
Manuscript Accepted: October 11, 2010
Published: October 29, 2010

Virtual Issues
(2010) Advances in Optics and Photonics
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

John N. Galayda, John Arthur, Daniel F. Ratner, and William E. White, "X-ray free-electron lasers—present and future capabilities [Invited]," J. Opt. Soc. Am. B 27, B106-B118 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Emma, “First lasing of the LCLS X-ray FEL at 1.5Å,” in Proceedings of the 2009 Particle Accelerator Conference (PAC2009) (IEEE, 2009), paper TH3PBI01.
  2. Private communication, J. Krzywinski and J. Turner, SLAC, Menlo Park, Calif., USA.
  3. J. Wu, Y. Ding, P. Emma1, Z. Huang, H. Loos, M. Messerschmidt, E. Schneidmiller, and M. Yurkov, “LCLS X-ray pulse duration measurement using the statistical fluctuation method,” in Proceedings of the 2010 Free-Electron Laser Conference(MAX-lab,2010), paper MOPC14.
  4. J. M. Glownia, J. Cryan, O. Kornilov, M. Hertlein, O. Gessner, A. Belkacem, R. Wilcox, G. Huang, J. White, V. Petrovic, C. Raman, H. Merdji, D. Ray, J. Andreasson, J. Hajdu, J. Frisch, W. White, C. Bostedt, P. H. Bucksbaum, and R. Coffee, “Ultrafast X-ray pump, laser probe spectroscopy at LCLS,” in Proceedings of the Quantum Electronics and Laser Science Conference (QELS) (Optical Society of America, 2010).
  5. Y. Ding, A. Brachmann, F.-J. Decker, D. Dowell, P. Emma, J. Frisch, S. Gilevich, G. Hays, Ph. Hering, Z. Huang, R. Iverson, H. Loos, A. Miahnahri, H.-D. Nuhn, D. Ratner, J. Turner, J. Welch, W. White, and J. Wu, “Measurements and simulations of ultralow emittance and ultrashort electron beams at the linac coherent light source,” Phys. Rev. Lett. 102, 254801-1–254801-4 (2009). [CrossRef]
  6. A.Brachmann, C.Bostedt, J. Bozek, R. Coffee, F.-J Decker, Y. Ding, D. Dowell, P. Emma, J. Frisch, S.Gilevich, G. Haller, G. Hays, Ph. Hering, B. Hill, Z. Huang, R. Iverson, E.Kanter, B. Kraessig, H. Loos, A. Miahnahri, H.-D.NuhnA. Perazzo, M. Petree, D. Ratner, R. Santra, T. Smith, S. Southworth, J. Turner, J. Welch, W. White, J. Wu, L. Young, J. M. Byrd, G. Huang, and R. Wilcox, “Femtosecond operation of the LCLS for user experiments,” in Proceedings of the 2010 International Particle Accelerator Conference (European Organization for Nuclear Research (CERN) (2010), paper TUPE066.
  7. P. Emma, K. Bane, M. Cornacchia, Z. Huang, H. Schlarb, G. Stupakov, and D. Walz, “Femtosecond and subfemtosecond X-ray pulses from a self-amplified-spontaneous-emission-based free-electron laser,” Phys. Rev. Lett. 92, 074801(4) (2004). [CrossRef]
  8. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, “Potential for biomolecular imaging with femtosecond X-ray pulses,” Nature (London) 406, 752–757 (2000). [CrossRef]
  9. M. Hoener, L. Fang, O. Kornilov, O. Gessner, S. T. Pratt, M. Gühr, E. P. Kanter, C. Blaga, C. Bostedt, J. D. Bozek, P. H. Bucksbaum, C. Buth, M. Chen, R. Coffee, J. Cryan, L. DiMauro, M. Glownia, E. Hosler, E. Kukk, S. R. Leone, B. McFarland, M. Messerschmidt, B. Murphy, V. Petrovic, D. Rolles, and N. Berrah, “Ultraintense X-ray induced ionization, dissociation, and frustrated absorption in molecular nitrogen,” Phys. Rev. Lett. 104, 253002 (2010). [CrossRef] [PubMed]
  10. L. Young, E. P. Kanter, B. Krässig, Y. Li, A. M. March, S. T. Pratt, R. Santra, S. H. Southworth, N. Rohringer, L. F. DiMauro, G. Doumy, C. A. Roedig, N. Berrah, L. Fang, M. Hoener, P. H. Bucksbaum, J. P. Cryan, S. Ghimire, J. M. Glownia, D. A. Reis, J. D. Bozek, C. Bostedt, and M. Messerschmidt, “Femtosecond electronic response of atoms to ultra-intense X-rays,” Nature (London) 466, 56–61 (2010). [CrossRef]
  11. James M. Glownia, J. Cryan, O. Kornilov, M. Hertlein, O. Gessner, A. Belkacem, R. Wilcox, G. Huang, J. White, V. Petrovic, C. Raman, H. Merdji, D. Ray, J. Andreasson, J. Hajdu, J. Frisch, W. White, C. Bostedt, P. H. Bucksbaum, and R. Coffee, “Ultrafast X-ray pump, laser probe spectroscopy at LCLS,” in Proceedings of the Quantum Electronics and Laser Science Conference (QELS)(Optical Society of America, 2010), paper JFA4.
  12. J. P. Cryan, J. M. Glownia, J. Andreasson, A. Belkacem, N. Berrah, C. I. Blaga, C. Bostedt, J. Bozek, C. Buth, L. F. DiMauro, L. Fang, O. Gessner, M. Guehr, J. Hajdu, M. P. Hertlein, M. Hoener, O. Kornilov, J. P. Marangos, A. M. March, B. K. McFarland, H. Merdji, V. S. Petrovic, C. Raman, D. Ray, D. Reis, F. Tarantelli, M. Trigo, J. L. White, W. White, L. Young, P. H. Bucksbaum, and R. N. Coffee, “Auger electron angular distribution of double core-hole states in the molecular reference frame,” Phys. Rev. Lett. 105, 083005 (2010). [CrossRef] [PubMed]
  13. H. Chapman, private communication.
  14. Information on the status of the LCLS facility, its scientific instruments and access for experiments may be found at the LCLS website: https://slacportal.slac.stanford.edu/sites/lcls_public/Pages/Default.aspx.
  15. J. M. J. Madey, “Stimulated emission of bremsstrahlung in a periodic magnetic field,” J. Appl. Phys. 42, 1906–1913 (1971). [CrossRef]
  16. W. B. Colson, J. Blau, K. Cohn, J. Jimenez, and R. Pifer, “Free electron lasers in 2009,” in Proceedings of FEL2009(2009), pp. 591–594. This reference includes a comprehensive list of demonstrated and proposed FELs, along with website links.
  17. R. Bonifacio, C. Pellegrini, and L. M. Narducci, “Collective instabilities and high-gain regime in a free-electron laser,” Opt. Commun. 50, 373–378 (1984). [CrossRef]
  18. P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J. Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher, J. Frisch, S. Gilevich, J. Hastings, G. Hays, Ph. Hering, Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, A. Miahnahri, S. Moeller, H.-D. Nuhn, G. Pile, D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins 1, J. Turner, J. Welch, W. White 1, J. Wu, G. Yocky, and J. Galayda, “First lasing and operation of an ångstrom-wavelength free-electron laser,” Nat. Photonics 4, 641–647 (2010). [CrossRef]
  19. For X-ray sources such as synchrotron light sources and free-electron lasers, “brightness” is a commonly used figure of merit, corresponding to photons/ (second*mm2*milliradian2*0.1% bandwidth). Typical storage-ring X-ray sources can approach brightness of 1020–1021 while an X-ray free-electron laser can reach 1033 or more.
  20. Committee on Free Electron Lasers and Other Advanced Coherent Light Sources, National Research Council (Donald Levy, chair), Free Electron Lasers and Other Advanced Sources of Light: Scientific Research Opportunities, The National Academies Press, 1994.
  21. C. Pellegrini, “A 4to0.1 nm FEL based on the SLAC linac,” in Proceedings of the Workshop on Fourth Generation Light Sources, M.Cornacchia and H.Winick eds., SSRL-SLAC Report 92/02, (SSRL/SLAC, 1992), p. 364.
  22. W. Barletta, A. Sessler, and L. Yu, ibid. pp. 376–383 (1992).
  23. LCLS Design Study Group, “Linac Coherent Light Source (LCLS) Design Study Report,” Tech. Rep. SLAC-R-521 (Stanford Linear Accelerator Center of Stanford University, 1998) .
  24. LCLS Scientific Advisory Committee and LCLS Technical Advisory Committee, “LCLS-the First Experiments” Tech. Rep. SLAC-R-611 (Stanford Linear Accelerator Center of Stanford University, 2000).
  25. R. Brinkmann, “On the free electron laser mode of operation in TESLA,” Tech. Rep. TESLA-Report 1996–01 (TESLA, 1996).
  26. F.Richard, J.R.Schneider, D.Trines, and A.Wagner, editors, “TESLA Technical Design Report,” Tech. Rep. DESY 2001–011 (TESLA, 2001).
  27. An extended list of tests of SASE at wavelengths ranging from microwave to nanometers can be found in Refs. 25–36 at the end of Ch. 4 of the Linac Coherent Light Source Conceptual Design Report, SLAC-R-593 (2001), pp. 4–27.
  28. S. V. Milton, E. Gluskin, S. G. Biedron, R. J. Dejus, P. K. Den Hartog, J. N. Galayda, K.-J. Kim, J. W. Lewellen, E. R. Moog, V. Sajaev, N. S. Sereno, G. Travish, N. A. Vinokurov, N. D. Arnold, C. Benson, W. Berg, J. A. Biggs, M. Borland, J. A. Carwardine, Y.-C. Chae, G. Decker, B. N. Deriy, M. J. Erdmann, H. Friedsam, C. Gold, A. E. Grelick, M. W. Hahne, K. C. Harkay, Z. Huang, E. S. Lessner, R. M. Lill, A. H. Lumpkin, O. A. Makarov, G. M. Markovich, D. Meyer, A. Nassiri, J. R. Noonan, S. J. Pasky, G. Pile, T. L. Smith, R. Soliday, B. J. Tieman, E. M. Trakhtenberg, G. F. Trento, I. B. Vasserman, D. R. Walters, X. J. Wang, G. Wiemerslage, S. Xu, and B.-X. Yang, “Observation of self-amplified spontaneous emission and exponential growth at 530 nm,” Phys. Rev. Lett. , 85, 988–991 (2000). [CrossRef] [PubMed]
  29. A. Tremaine, P. Frigola, A. Murokh, C. Pellegrini, S. Reiche, J. Rosenzweig, M. Babzien, I. Ben-Zvi, E. Johnson, R. Malone, G. Rakowsky, J. Skaritka, X. J. Wang, V. Yakimenko, L. Bertolini, J. Hill, G. Le Sage, M. Libkind, A. Toor, K. Van Bibber, R. Carr, M. Cornacchia, L. Klaisner, H.-D. Nuhn, and R. Ruland, “Saturation measurements of an 800 nm SASE FEL,” in Proceedings of the 2001 Particle Accelerator Conference (IEEE, 2001), pp. 2760–2762.
  30. J. Andruszkow, B. Aune, V. Ayvazyan, N. Baboi, R. Bakker, V. Balakin, D. Barni, A. Bazhan, M. Bernard, A. Bosotti, J. C. Bourdon, W. Brefeld, R. Brinkmann, S. Buhler, J.-P. Carneiro, M. Castellano, P. Castro, L. Catani, S. Chel, Y. Cho, S. Choroba, E. R. Colby, W. Decking, P. Den Hartog, M. Desmons, M. Dohlus, D. Edwards, H. T. Edwards, B. Faatz, J. Feldhaus, M. Ferrario, M. J. Fitch, K. Flöttmann, M. Fouaidy, A. Gamp, T. Garvey, C. Gerth, M. Geitz, E. Gluskin, V. Gretchko, U. Hahn, W. H. Hartung, D. Hubert, M. Hüning, R. Ischebek, M. Jablonka, J. M. Joly, M. Juillard, T. Junquera, P. Jurkiewicz, A. Kabel, J. Kahl, H. Kaiser, T. Kamps, V. V. Katelev, J. L. Kirchgessner, M. Körfer, L. Kravchuk, G. Kreps, J. Krzywinski, T. Lokajczyk, R. Lange, B. Leblond, M. Leenen, J. Lesrel, M. Liepe, A. Liero, T. Limberg, R. Lorenz, Lu Hui Hua, Lu Fu Hai, C. Magne, M. Maslov, G. Materlik, A. Matheisen, J. Menzel, P. Michelato, W.-D. Möller, A. Mosnier, U.-C. Müller, O. Napoly, A. Novokhatski, M. Omeich, H. S. Padamsee, C. Pagani, F. Peters, B. Petersen, P. Pierini, J. Pflüger, P. Piot, B. Phung Ngoc, L. Plucinski, D. Proch, K. Rehlich, S. Reiche, D. Reschke, I. Reyzl, J. Rosenzweig, J. Rossbach, S. Roth, E. L. Saldin, W. Sandner, Z. Sanok, H. Schlarb, G. Schmidt, P. Schmüser, J. R. Schneider, E. A. Schneidmiller, H.-J. Schreiber, S. Schreiber, P. Schütt, J. Sekutowicz, L. Serafini, D. Sertore, S. Setzer, S. Simrock, B. Sonntag, B. Sparr, F. Stephan, V. A. Sytchev, S. Tazzari, F. Tazzioli, M. Tigner, M. Timm, M. Tonutti, E. Trakhtenberg, R. Treusch, D. Trines, V. Verzilov, T. Vielitz, V. Vogel, G. v. Walter, R. Wanzenberg, T. Weiland, H. Weise, J. Weisend, M. Wendt, M. Werner, M. M. White, I. Will, S. Wolff, M. V. Yurkov, K. Zapfe, P. Zhogolev, and F. Zhou, “First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength,” Phys. Rev. Lett. 85, 3825–3829 (2000). [CrossRef]
  31. S. Schreiber, B. Faatz, J. Feldhaus, K. Honkavaara, and R. Treusch, “FEL user facility FLASH,” in Proceedings of the 2010 International Particle Accelerator Conference (IEEE, 2010), paper TUPEO04, http://www.JACOW.org.
  32. T. Shintake, “Status report on Japanese XFEL construction project at SPring-8,” in Proceedings of the 2010 International Particle Accelerator Conference (IEEE, 2010), p. TUXRA02, http://www.JACOW.org.
  33. M.Altarelli, R.Brinkmann, M.Chergui, W.Decking, B.Dobson, S.Düsterer, G.Grübel, W.Graeff, H.Graafsma, J.Hajdu, J.Marangos, J.Pflüger, H.Redlin, D.Riley, I.Robinson, J.Rossbach, A.Schwarz, K.Tiedtke, T.Tschentscher, I.Vartaniants, H.Wabnitz, H.Weise, R.Wichmann, K.Witte, A.Wolf, M.Wulff, and M.Yurkov, Eds., “XFEL: The European X-ray Free-Electron Laser, Technical Design Report,” Tech. Rep. DESY 2006-097 (DESY, 2006).
  34. J. P. Blewett, Phys. Rev. 69, 87–95 (1946). [CrossRef]
  35. H. C. Pollock, “The discovery of synchrotron radiation,” Am. J. Phys. 51, 278–280 (1983). [CrossRef]
  36. A. Hofmann, The Physics of Synchrotron Radiation (Cambridge University, 2004). [CrossRef]
  37. H. Motz, “Applications of the radiation from fast electron beams,” J. Appl. Phys. 22, 528–535 (1951).
  38. S. Krinsky, “The physics and properties of free-electron lasers,” Tech. Rep. BNL-69298 (June 2002); also in AIP Conference Proceedings Volume 648, Beam Instrumentation Workshop 2002: Tenth Workshop, Upton, New York (USA), 6–9 May 2002 ISBN: 0-7354–0103-9, GaryA.Smith (ed). [PubMed]
  39. W. B. Colson, “One-body electron dynamics in a free electron laser,” Phys. Lett. 64A, 190–192 (1977).
  40. G. R. Neil, C. L. Bohn, S. V. Benson, G. Biallas, D. Douglas, H. F. Dylla, R. Evans, J. Fugitt, A. Grippo, J. Gubeli, R. Hill, K. Jordan, R. Li, L. Merminga, P. Piot, J. Preble, M. Shinn, T. Siggins, R. Walker, and B. Yunn, “Sustained kilowatt lasing in a free-electron laser with same-cell energy recovery,” Phys. Rev. Lett. 84, 662–665 (2000). [CrossRef] [PubMed]
  41. M. E. Couprie, A. Loulergue, C. Benabderrhamane, O. Chubar, J. C. Denard, J. M. Filhol, M. Idir, M. Labat, P. Lebasque, A. Lestrade, M. Louvet, P. Marchand, O. Marcouillé, P. Mercère, L. Nadolski, L. Nahon, P. Dumas, P. Morin, C. Bruni, G. Lambert, P. Zeitoun, D. Garzella, M. Meyer Lixam, J. Lüning, E. Collet, and L. Giannessi, “The ARC-EN-CIEL fourth generation light source proposal,” in Proceedings of FEL08 (CERN, 2008), paper MOPPH066, http://www.jacow.org.
  42. S. V. Benson, D. Douglas, P. Evtushenko, J. Gubeli, F. E. Hannon, K. Jordan, J. M. Klopf, G. R. Neil, M. D. Shinn, C. Tennant, G. P. Williams, and S. Zhang, “The JLAMP VUV/Soft X-ray User Facility at Jefferson Laboratory,” in Proceedings IPAC 2010 (2010), paper TUPE074.
  43. B. Newnam, “Multi-facet metal mirror design for extreme ultraviolet and soft X-ray free-electron laser resonator,” presented at the 17th Annual Symposium on Optical Materials for High-Power Lasers, Boulder, Colorado, 1985.
  44. J. C. Gallardo, R. Fernow, R. Palmer, and C. Pellegrini, “Theory of a free-electron laser with a gaussian optical undulator,” IEEE J. Quantum Opt. 24, 1557–1566 (1988). [CrossRef]
  45. J. C. Goldstein, B. McVey, and C. J. Elliot, “Optical design and performance of an XUV FEL oscillator,”Nucl. Instrum. Methods Phys. Res. A 296, 288–291 (1990). [CrossRef]
  46. N. R. Thompson, D. J. Dunning, and B. W. J. McNeil, “Short-wavelength regenerative amplifier free-electron lasers,” in Proceedings of the 2007 Free-Electron Laser Conference(CERN, 2007), paper MOCAU01.
  47. R. Ruth and Z. Huang, “Fully coherent X-ray pulses from a regenerative-amplifier free-electron laser,” Phys. Rev. Lett. 96, 144801—144809 (2006). [CrossRef] [PubMed]
  48. Y.H. Chin, K.-J. Kim, and M.Xie, “Three-dimensional theory of the small-signal high-gain free-electron laser including betatron oscillations,” Phys. Rev. A46,6662–6683 (1992).
  49. M. Xie, “Exact and variational solutions of 3D eigenmodes in high gain FEL,” Nucl. Instrum. Methods 445, 59–66 (2000). [CrossRef]
  50. Z. Huang and K. J. Kim, “Solution to the initial value problem for a high-gain FEL via van Kampen’s method,” Nucl. Instrum. Methods 475, 59–64 (2001). [CrossRef]
  51. A. Einstein, “Strahlungs-emission und-absorption nach der quantentheorie,” Verhandlungen der Deutschen Physikalischen Gesellschaft 18, 318 (1916).
  52. W. Koechner, Solid-State Laser Engineering (Springer Verlag, 1976).
  53. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1994). [CrossRef]
  54. Z. Huang and S. Reiche, “Generation of GW-level, sub-angstrom radiation in the LCLS using a second-harmonic radiator,” Proceedings of the 2004 FEL Conference (2004), pp. 201–204, http://www.jacow.org.
  55. S. J. Russell, K. A. Bishofberger, B. E. Carlsten, D. C. Nguyen, and E. I. Smirnova, “Conceptual design of a 20 GeV electron accelerator for a 50 keV X-ray free-electron laser using emittance exchange optics and crystallographic mask,” in Proceedings of PAC09 (IEEE, 2009), paper TH5PFP036.
  56. J. Corlett, J. Byrd, W. M. Fawley, M. Gullans, D. Li, S. M. Lidia, H. Padmore, G. Penn, I. Pogorelov, J. Qiang, D. Robin, F. Sannibale, J. W. Staples, C. Steier, M. Venturini, S. Virostek, W. Wan, R. Wells, R. Wilcox, J. Wurtele, and A. Zholents, “A high repetition rate VUV-soft X-ray FEL concept,” (IEEE, 2007).
  57. M. Tigner, Nuovo Cimento 37, 1228 (1965). [CrossRef]
  58. J. M. Klopf, A. Greer, J. Gubeli, G. R. Neil, M. Shinn, T. Siggins, D. Waldman, G. P. Williams, A. Todd, V. Christina, and O. Chubar, “The jefferson lab high power THz user facility,” Nucl. Instrum. Methods Phys. Res. A 582, 114–116 (2007). [CrossRef]
  59. B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements,” Meas. Sci. Technol. 21, 054017 (2010). [CrossRef]
  60. S. Sasaki, “Analyses for a planar variably-polarizing undulator,” Nucl. Instrum. Methods Phys. Res. A 347, 83–86 (1994). [CrossRef]
  61. K.-J. Kim, “A synchrotron radiation source with arbitrarily adjustable elliptical polarization,” Nucl. Instrum. Methods Phys. Res. A 219, 425–429 (1984). [CrossRef]
  62. K.-J. Kim, “Circular polarization with crossed-planar undulators in high-gain FELs,” Nucl. Instrum. Methods Phys. Res. A 445, 329–332 (2000). [CrossRef]
  63. Y. Ding and Z. Huang, “Statistical analysis of crossed undulator for polarization control in a self-amplified spontaneous emission free electron laser,” Phys. Rev. ST Accel. Beams 11, 03070 (2008). [CrossRef]
  64. J. Kim, J. Cox, J. Chen, and F. X. Kärtner, “Femtosecond synchronization of large-scale X-ray free-electron lasers,” in Proceedings of FEL08 (CERN, 2008), paper THBAU03, http://www.jacow.org.
  65. R. Wilcox, J. M. Byrd, L. Doolittle, G. Huang, and J. W. Staples, “Stable transmission of radio frequency signals on fiber links using interferometric delay sensing,” Opt. Lett. 34, 3050–3052 (2009). [CrossRef] [PubMed]
  66. J. M. Glownia, J. Cryan, J. Andreasson, A. Belkacem, N. Berrah, C. I. Blaga, C. Bostedt, J. Bozek, L. F. DiMauro, L. Fang, J. Frisch, O. Gessner, M. Gühr, J. Hadju, M. P. Hertlein, M. Hoener, G. Huang, O. Kornilov, J. P. Marangos, A. M. March, B. K. McFaland, H. Merdji, V. S. Petrovic, C. Raman, D. Ray, D. A. Reis, M. Trigo, J. L. White, W. White, R. Wilcox, L. Young, R. N. Coffee, P. H. Bucksbaum, “Time-resolved pump-probe experiments at the LCLS,” Opt. Express 18, 17620–17630 (2010). [CrossRef] [PubMed]
  67. E. L. Saldin, E. A. Schneidmiller, M. V. Yurkov, “Terawatt-scale sub-10-fs laser technology—key to generation of GW-level attosecond pulses in X-ray free electron laser,” Opt. Commun. 237, 153–164 (2004). [CrossRef]
  68. A. A. Zholents and W. M. Fawley, “Proposal for intense attosecond radiation from an X-ray free-electron laser,” Phys. Rev. Lett. 92, 224801 (2004). [CrossRef] [PubMed]
  69. B. W. J. McNeil, N. R. Thompson, D. J. Dunning, and B. Sheehy, “Retention of attosecond pulse structure in an HHG seeded FEL laser,” in Proceedings of FEL08 (CERN, 2008), paper MOCAU04, http://www.JACOW.org.
  70. G. Lambert, T. Hara, D. Garzella, T. Tanikawa, M. Labat, B. Carre, H. Kitamura, T. Shintake, M. Bougeard, S. Inoue, Y. Tanaka, P. Salieres, H. Merdji, O. Chubar, O. Gobert, K. Tahara, and M.-E. Couprie, “Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light,” Nat. Phys. 889, 296–300 (2008). [CrossRef]
  71. A. Azima, J. Bödewadt, M. Drescher, H. Delsim-Hashemi, S. Khan, T. Maltezopoulos, V. Miltchev, M. Mittenzwey, J. Rossbach, R. Tarkeshian, M. Wieland, H. Schlarb, S. Düsterer, J. Feldhaus, and T. Laarmann, “Experimental layout of 30 nm high harmonic laser seeding at FLASH,” in Proceedings of EPAC08 (CERN, 2008), paper MOPC028 http://www.JACOW.org.
  72. L. H. Yu, “Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers,” Phys. Rev. 44, 5178–5193 (1991). [CrossRef]
  73. L.-H. Yu, M. Babzien, I. Ben-Zvi, L. F. DiMauro, A. Doyuran, W. Graves, E. Johnson, S. Krinsky, R. Malone, I. Pogorelsky, J. Skaritka, G. Rakowsky, L. Solomon, X. J. Wang, M. Woodle, V. Yakimenko, S. G. Biedron, J. N. Galayda, E. Gluskin, J. Jagger, V. Sajaev, and I. Vasserman, “High-gain harmonic-generation free-electron laser,” Science 289, 932–934 (2000). [CrossRef] [PubMed]
  74. L. H. Yu, L. DiMauro, A. Doyuran, W. S. Graves, E. D. Johnson, R. Heese, S. Krinsky, H. Loos, J. B. Murphy, G. Rakowsky, J. Rose, T. Shaftan, B. Sheehy, J. Skaritka, X. J. Wang, and Z. Wu, “First ultraviolet high-gain harmonic generation free-electron laser,” Phys. Rev. Lett. 91, 074801 (2003). [CrossRef] [PubMed]
  75. X. J. Wang, Y. Shen, T. Watanabe, J. B. Murphy, J. Rose and T. Tsang, “The first lasing of 193 nm SASE, 4th harmonic HGHG and ESASE at the NSLS SDL,” in Proceedings of FEL2006 (CERN, 2006), paper MOAAU05.
  76. G. Stupakov, “Echo-enabled harmonic generation,” Proceedings of the 2010 International Particle Accelerator Conference (IEEE, 2010), paper WEXRA02, pp. 2416–2420.
  77. D. Xiang, E. Colby, M. Dunning, S. Gilevich, C. Hast, K. Jobe, D. McCormick, J. Nelson, T. O. Raubenheimer, K. Soong, G. Stupakov, Z. Szalata, D. Walz, S. Weathersby, M. Woodley, and P.-L. Pernet, “Demonstration of the echo-enabled harmonic generation technique for short-wavelength seeded free electron lasers,” Phys. Rev. Lett. 105, 114801-1–114801-4 (2010). [CrossRef]
  78. J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, pp. 341–352 (1997). [CrossRef]
  79. A. Marinelli, C. Pellegrini, S. Reiche, and L. Giannessi, “A comparison between high-gain harmonic generation and self-seeding for the production of narrow-bandwidth radiation in a free-electron laser,” in Proceedings of FEL2009 (CERN, 2009), paper MOOB05, pp. 31–34, http://www.JACOW.org.