OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: B18–B35

Wavefront engineering for mid-infrared and terahertz quantum cascade lasers [Invited]

Nanfang Yu and Federico Capasso  »View Author Affiliations


JOSA B, Vol. 27, Issue 11, pp. B18-B35 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000B18


View Full Text Article

Enhanced HTML    Acrobat PDF (2108 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We review our recent work on beam shaping of mid-infrared (mid-IR) and terahertz (THz) quantum cascade lasers (QCLs) using plasmonics. Essentials of QCLs are discussed; these include key developments, the operating principle based on quantum design, and beam quality problems associated with laser waveguide design. The bulk of the present paper is focused on the use of surface plasmons (SPs) to engineer the wavefront of QCLs. This is achieved by tailoring the SP dispersion using properly designed plasmonic structures, in particular, plasmonic Bragg gratings, designer (spoof) surface plasmon structures, and channel polariton structures. Using mid-IR and THz QCLs as a model system, various functionalities have been demonstrated, ranging from beam collimation, polarization control, to multibeam emission and spatial wavelength demultiplexing. Plasmonics offers a monolithic, compact, and low-loss solution to the problem of poor beam quality of QCLs and may have a large impact on applications such as sensing, light detection and ranging (LIDAR), free-space optical communication, and heterodyne detection of chemicals. The plasmonic designs are scalable and applicable to near-infrared active or passive optical devices.

© 2010 Optical Society of America

OCIS Codes
(120.1680) Instrumentation, measurement, and metrology : Collimation
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3300) Lasers and laser optics : Laser beam shaping
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

History
Original Manuscript: July 2, 2010
Revised Manuscript: August 12, 2010
Manuscript Accepted: August 19, 2010
Published: October 11, 2010

Virtual Issues
(2010) Advances in Optics and Photonics

Citation
Nanfang Yu and Federico Capasso, "Wavefront engineering for mid-infrared and terahertz quantum cascade lasers [Invited]," J. Opt. Soc. Am. B 27, B18-B35 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-11-B18


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. F. Kazarinov and R. A. Suris, “Amplification of electromagnetic waves in a semiconductor superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).
  2. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994). [CrossRef] [PubMed]
  3. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001). [CrossRef]
  4. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000). [CrossRef]
  5. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002). [CrossRef] [PubMed]
  6. Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009). [CrossRef]
  7. M. Razeghi, “High-power high-wall plug efficiency mid-infrared quantum cascade lasers based on InP∕GaInAs∕InAlAs material system,” Proc. SPIE 7230, 723011 (2009). [CrossRef]
  8. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009). [CrossRef]
  9. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997). [CrossRef]
  10. C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photonics Technol. Lett. 9, 1090–1092 (1997). [CrossRef]
  11. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005). [CrossRef]
  12. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2to10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006). [CrossRef]
  13. M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630–19634 (2006). [CrossRef] [PubMed]
  14. M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006). [CrossRef] [PubMed]
  15. G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008). [CrossRef]
  16. A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1083–1088 (2008). [CrossRef]
  17. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6to11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009). [CrossRef]
  18. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007). [CrossRef]
  19. B. G. Lee, H. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0to9.8 μm,” IEEE Photonics Technol. Lett. 21, 914–916 (2009). [CrossRef]
  20. M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High-performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26, 3534–3555 (2008). [CrossRef]
  21. A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008). [CrossRef]
  22. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002). [CrossRef] [PubMed]
  23. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007). [CrossRef]
  24. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 1, 1–22 (2008).
  25. M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009). [CrossRef]
  26. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Qing Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25 meters),” Appl. Phys. Lett. 89, 141125 (2006). [CrossRef]
  27. J. Faist, G. Scalari, C. Walther, and M. Fischer, “Progress in long wavelength terahertz quantum cascade lasers,” presented at the 2007 Materials Research Society (MRS) Spring Meeting, San Francisco, California, April 9–13, 2007, paper CC7.2.
  28. S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009). [CrossRef]
  29. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005). [CrossRef] [PubMed]
  30. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum cascade lasers,” Electron. Lett. 42, 89–91 (2006). [CrossRef]
  31. R. H. Rediker, I. Melngailis, and A. Mooradian, “Lasers, their development, and applications at M.I.T. Lincoln Laboratory,” IEEE J. Quantum Electron. 20, 602–615 (1984). [CrossRef]
  32. S. Mukherjee and Z. S. Shi, “State-of-the-art IV–VI semiconductor light-emitting devices in mid-infrared opto-electronic applications,” IETE Tech. Rev. 26, 236–246 (2009). [CrossRef]
  33. S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005). [CrossRef]
  34. M. Hajenius, P. Khosropanah, J. N. Novenier, J. R. Gao, T. M. Klapwijk, S. Barbieri, S. Dhillon, P. Filloux, C. Sirtori, D. A. Ritchie, and H. E. Beere, “Surface plasmon quantum cascade lasers as terahertz local oscillators,” Opt. Lett. 33, 312–314 (2008). [CrossRef] [PubMed]
  35. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32, 2840–2842 (2007). [CrossRef]
  36. M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43, 573–574 (2007). [CrossRef]
  37. M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4 μm) quantum cascade laser amplifier for high-power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103–4105 (2002). [CrossRef]
  38. L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91, 181122 (2007). [CrossRef]
  39. Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91, 141123 (2007). [CrossRef]
  40. D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, “Surface-emitting 10.1 μm quantum-cascade distributed feedback lasers,” Appl. Phys. Lett. 75, 3769–3771 (1999). [CrossRef]
  41. W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77, 2086–2088 (2000). [CrossRef]
  42. D. Hofstetter, J. Faist, M. Beck, A. Müller, and U. Oesterle, “Edge- and surface-emitting 10.1 μm quantum cascade distributed feedback lasers,” Physica E 7, 25–28 (2000). [CrossRef]
  43. C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86, 211101 (2005). [CrossRef]
  44. J. A. Fan, M. A. Belkin, and F. Capasso, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14, 11672–11680 (2006). [CrossRef] [PubMed]
  45. S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, and Q. Hu, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15, 114–128 (2007). [CrossRef]
  46. M. I. Amanti, M. Fischer, G. Scalari, M. Beck and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009). [CrossRef]
  47. E. Mujagić, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93, 161101 (2008). [CrossRef]
  48. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3, 46–49 (2009). [CrossRef]
  49. I. Vurgaftman and J. R. Meyer, “Photonic-crystal distributed-feedback quantum cascade lasers,” IEEE J. Quantum Electron. 38, 592–602 (2002). [CrossRef]
  50. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003). [CrossRef] [PubMed]
  51. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009). [CrossRef] [PubMed]
  52. Q.-Y. Lu, W.-H. Guo, W. Zhang, L.-J. Wang, J.-Q. Liu, L.- Li, F.-Q. Liu, and Z.-G. Wang, “Room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers with single longitudinal and lateral mode performance,” Appl. Phys. Lett. 96, 051112 (2010). [CrossRef]
  53. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–63 (2007). [CrossRef] [PubMed]
  54. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  55. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).
  56. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 330, 377–445 (1908). [CrossRef]
  57. J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 23, 846–866 (1907). [CrossRef]
  58. A. Sommerfeld, “Über die Ausbreitung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. 28, 665–736 (1909). [CrossRef]
  59. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996). [CrossRef] [PubMed]
  60. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004). [CrossRef] [PubMed]
  61. F. J. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7, S97–S101 (2005). [CrossRef]
  62. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008). [CrossRef]
  63. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2000).
  64. J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990). [CrossRef]
  65. I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002). [CrossRef]
  66. D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004). [CrossRef]
  67. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). [CrossRef] [PubMed]
  68. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  69. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467–9476 (2006). [CrossRef] [PubMed]
  70. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008). [CrossRef] [PubMed]
  71. G. B. Hocker and W. K. Burns, Mode dispersion in diffused channel waveguides by the effective index method, Appl. Opt. 16, 113–118 (1977). [CrossRef] [PubMed]
  72. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008). [CrossRef]
  73. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef] [PubMed]
  74. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003). [CrossRef] [PubMed]
  75. N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93, 181101 (2008). [CrossRef]
  76. N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447–19461 (2008). [CrossRef] [PubMed]
  77. N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009). [CrossRef]
  78. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (6th ed.) (Oxford University Press, 2007).
  79. H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications I (Academic, 2000).
  80. N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009). [CrossRef]
  81. F. Lopez-Tejeira, Sergio G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007). [CrossRef]
  82. P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000). [CrossRef]
  83. W. Walukiewicz, L. Lagowski, L. Jastrzebski, M. Lichtensteiger, and H. C. Gatos, “Electron mobility and free-carrier absorption in GaAs: determination of the compensation ratio,” J. Appl. Phys. 50, 899–908 (1979). [CrossRef]
  84. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Imaging and focusing properties of plasmonic metamaterial devices,” Phys. Rev. B 76, 205424 (2007). [CrossRef]
  85. J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15, 15234–15241 (2007). [CrossRef] [PubMed]
  86. I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev. 3, 575–590 (2009). [CrossRef]
  87. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17, 18184–18195 (2009). [CrossRef] [PubMed]
  88. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008). [CrossRef] [PubMed]
  89. B. Wang, L. Liu, and S. He, “Propagation loss of terahertz surface plasmon polaritons on a periodically structured Ag surface,” J. Appl. Phys. 104, 103531 (2008). [CrossRef]
  90. M. C. Gaidis, H. M. Pickett, C. D. Smith, S. C. Martin, R. P. Smith, and P. H. Siegel, “A 2.5-THz receiver front end for spaceborne applications,” IEEE Trans. Microwave Theory Tech. 48, 733–739 (2000). [CrossRef]
  91. P. H. Siegel and R. J. Dengler, “The dielectric-filled parabola: A new millimeter/submillimeter wavelength receiver/transmitter front end,” IEEE Trans. Antennas Propag. 39, 40–47 (1991). [CrossRef]
  92. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater. doc. ID:10.1038/nmat2822 (posted 8 August 2010, in press).
  93. J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  94. Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001). [CrossRef]
  95. R. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936). [CrossRef]
  96. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5) 35–40 (2004). [CrossRef]
  97. E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008). [CrossRef]
  98. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15, 13272–13281 (2007). [CrossRef] [PubMed]
  99. J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506–125600 (2007). [CrossRef]
  100. S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009). [CrossRef] [PubMed]
  101. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17, 10195–10205 (2009). [CrossRef] [PubMed]
  102. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Weinheim, Ger.) 21, 3504–3509 (2009). [CrossRef]
  103. E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009). [CrossRef] [PubMed]
  104. Q. Xu, R. M. Rioux, M. D. Dickey, and G. M Whitesies, “Nanoskiving: A new method to produce arrays of nanostructures,” Nano Lett. 41, 1566–1577 (2008).
  105. Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem., Int. Ed. 37, 550–575 (1998). [CrossRef]
  106. D. J. Lipomi, M. A. Kats, P. Kim, S. H. Kang, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning,” ACS Nano 4, 4017–4026 (2010). [CrossRef] [PubMed]
  107. E. J. Smythe, M. D. Dickey, G. M. Whitesides, and F. Capasso, “A technique to transfer metallic nanoscale patterns to small and non-planar surfaces,” ACS Nano 3, 59–65 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited