OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: B63–B92

High power fiber lasers: current status and future perspectives [Invited]

D. J. Richardson, J. Nilsson, and W. A. Clarkson  »View Author Affiliations


JOSA B, Vol. 27, Issue 11, pp. B63-B92 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000B63


View Full Text Article

Enhanced HTML    Acrobat PDF (954 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The rise in output power from rare-earth-doped fiber sources over the past decade, via the use of cladding-pumped fiber architectures, has been dramatic, leading to a range of fiber-based devices with outstanding performance in terms of output power, beam quality, overall efficiency, and flexibility with regard to operating wavelength and radiation format. This success in the high-power arena is largely due to the fiber’s geometry, which provides considerable resilience to the effects of heat generation in the core, and facilitates efficient conversion from relatively low-brightness diode pump radiation to high-brightness laser output. In this paper we review the current state of the art in terms of continuous-wave and pulsed performance of ytterbium-doped fiber lasers, the current fiber gain medium of choice, and by far the most developed in terms of high-power performance. We then review the current status and challenges of extending the technology to other rare-earth dopants and associated wavelengths of operation. Throughout we identify the key factors currently limiting fiber laser performance in different operating regimes—in particular thermal management, optical nonlinearity, and damage. Finally, we speculate as to the likely developments in pump laser technology, fiber design and fabrication, architectural approaches, and functionality that lie ahead in the coming decade and the implications they have on fiber laser performance and industrial/scientific adoption.

© 2010 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers

History
Original Manuscript: July 19, 2010
Revised Manuscript: August 27, 2010
Manuscript Accepted: August 28, 2010
Published: October 22, 2010

Virtual Issues
(2010) Advances in Optics and Photonics

Citation
D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives [Invited]," J. Opt. Soc. Am. B 27, B63-B92 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-11-B63


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. MacKechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers—versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995). [CrossRef]
  2. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997). [CrossRef]
  3. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004). [CrossRef] [PubMed]
  4. J. Nilsson, S. Ramachandran, T. M. Shay, and A. Shirakawa, “High-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 1–2 (2009). [CrossRef]
  5. Y. Jeong, A. J. Boyland, J. K. Sahu, S. Chung, J. Nilsson, and D. N. Payne, “Multi-kilowatt single-mode ytterbium-doped large-core fiber laser,” J. Opt. Soc. Korea 13, 416–422 (2009). [CrossRef]
  6. R. W. Berdine and R. A. Motes, Introduction to High Power Fiber Lasers, 1st ed. (Directed Energy Professional Society, 2009).
  7. E. Snitzer, “Proposed fiber cavities for optical lasers,” J. Appl. Phys. 32, 36–39 (1961). [CrossRef]
  8. E. Snitzer, “Optical maser action of Nd3+ in a barium crown glass,” Phys. Rev. Lett. 7, 444–446 (1961). [CrossRef]
  9. C. J. Koester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt. 3, 1182–1186 (1964). [CrossRef]
  10. J. Stone and C. A. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett. 23, 388–389 (1973). [CrossRef]
  11. S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low loss optical fibres containing rare-earth ions,” Electron. Lett. 21, 737–738 (1985). [CrossRef]
  12. R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fibre laser,” Electron. Lett. 21, 738–740 (1985). [CrossRef]
  13. R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026–1028 (1987). [CrossRef]
  14. E. Stiles, “New developments in IPG fiber laser technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).
  15. D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, “An Yb-doped monomode fiber laser: broadly tunable operation from 1.010 μm to 1.162 μm and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990). [CrossRef]
  16. R. Selvas, K. H. Ylä-Jarkko, J. K. Sahu, L.-B. Fu, J. N. Jang, J. Nilsson, S. U. Alam, P. W. Turner, J. Moore, and A. B. Grudinin, “High power, low noise, Yb-doped, cladding-pumped, three-level fiber sources at 980 nm,” Opt. Lett. 28, 1093–1095 (2003). [CrossRef]
  17. J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, “High power ytterbium-doped rod-type three-level photonic crystal fiber laser,” Opt. Express 16, 17891–17902 (2008). [CrossRef] [PubMed]
  18. F. Roeser, C. Jauregui, J. Limpert, and A. Tünnermann, “94 W 980 nm high brightness Yb-doped fiber laser,” Opt. Express 16, 17310–17318 (2008). [CrossRef]
  19. A. Shirakawa, C. B. T. Olausson, M. Chen, K. I. Ueda, J. K. Lyngsø, and J. Broeng, “Power-scalable photonic bandgap fiber sources with 167 W, 1178 nm and 14.5 W, 589 nm radiations,” in Advanced Solid State Photonics, 2010 OSA Technical Digest Series (Optical Society of America, 2010), postdeadline paper APDP6.
  20. J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air clad cladding pumped ytterbium doped fibre laser with wide tuning range,” Electron. Lett. 37, 1116–1117 (2001). [CrossRef]
  21. J. D. Minelly, R. I. Laming, J. E. Townsend, W. L. Barnes, E. R. Taylor, K. P. Jedrzejewski, and D. N. Payne, “High-gain fibre power amplifier tandem-pumped by a 3 W multi-stripe diode,” in Optical Fiber Communications Conference, 1992 OSA Technical Digest Series (Optical Society of America, 1992), pp. 32–33.
  22. M. L. Osowski, W. Hu, R. M. Lammert, S. W. Oh, P. T. Rudy, T. Stakelon, and J. E. Ungar, “Advances in high-brightness semiconductor lasers,” Proc. SPIE 6876, 68761E (2008). [CrossRef]
  23. R. D. Maurer, “Optical waveguide light source,” U.S. patent 3,808,549 (30 April 1974).
  24. J. D. Kafka, “Laser diode pumped fiber laser with pump cavity,” U.S. patent 4,829,529 (5 September 1989).
  25. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, “Double-clad, offset core Nd fiber laser,” in Optical Fiber Sensors, 1998 OSA Technical Digest Series (Optical Society of America, 1998), paper PD5.
  26. J. Nilsson, “Recent progress and limiting factors in high power fiber laser technology,” in Proceedings of the Conference on Lasers and Electro-Optics, 2010 OSA Technical Digest Series (Optical Society of America, 2010), tutorial paper CTuC1.
  27. J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fibre lasers and amplifiers,” IEEE Photon. Technol. Lett. 5, 301–303 (1993). [CrossRef]
  28. G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16, 1990–2001 (1998). [CrossRef]
  29. M. Laroche, S. Girard, J. K. Sahu, W. A. Clarkson, and J. Nilsson, “Accurate efficiency calculation of energy transfer processes in phosphosilicate Er3+-Yb3+ codoped fibers,” J. Opt. Soc. Am. B 23, 195–202 (2006). [CrossRef]
  30. H. Zellmer, A. Tünnermann, H. Welling, and V. Reichel, “Double-clad fiber laser with 30 W output power,” in Optical Amplifiers and Their Applications, Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), p. 137.
  31. K.-I. Ueda, H. Sekiguchi, and H. Kan, “1 kW CW output from fiber-embedded disk lasers,” in Proceedings of the Conference on Lasers and Electro-Optics, 2002 OSA Technical Digest Series (Optical Society of America, 2002), postdeadline paper CPDC4.
  32. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999). [CrossRef]
  33. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power,” Electron. Lett. 40, 470–472 (2004). [CrossRef]
  34. A. B. Grudinin, P. W. Turner, M. Ibsen, M. K. Durkin, J. Nilsson, D. N. Payne, and M. N. Zervas, “Multi-fibre arrangements for high-power fibre lasers and amplifiers,” U.S. patent 6,826,335 (30 November 2004).
  35. R. Horley, S. Norman, and M. N. Zervas, “Progress and development in fibre laser technology,” Proc. SPIE 6738, K7380–K7386 (2007).
  36. V. Gapontsev, D. Gapontsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in Proceedings of the European Conference on Lasers and Electro Optics (2005), paper CJ-1-1-THU.
  37. J. R. Leger, J. Nilsson, J. P. Huignard, A. P. Napartovich, T. M. Shay, and A. Shirakawa, “Laser beam combining and fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 15, 237–239 (2009). [CrossRef]
  38. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972). [CrossRef] [PubMed]
  39. R. W. Boyd, Nonlinear Optics (Academic, 1992), Chap. 8.
  40. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  41. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13, 546–551 (2007). [CrossRef]
  42. A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann, “100-W single-frequency master-oscillator fiber power amplifier,” Opt. Lett. 28, 1537–1539 (2003). [CrossRef] [PubMed]
  43. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108 (1989). [CrossRef]
  44. E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7, 171–174 (1989). [CrossRef]
  45. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30, 459–461 (2005). [CrossRef] [PubMed]
  46. R. Horley, S.-U. Alam, L. Cooper, J. Shaw, I. Mitchell, C. Sheehan, M. N. Zervas, K. Dzurko, J. K. Sahu, J. Nilsson and D. N. Payne, Y. Jeong, J.-N. Maran, C. A. Codemard, and S. Yoo, “Exploration of performance limits of fiber laser technology for directed energy applications,” in Solid State and Diode Laser Technology Review (2008).
  47. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single mode fibers,” J. Lightwave Technol. 22, 631–639 (2004). [CrossRef]
  48. P. D. Dragic, C. H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Proceedings of the Conference on Lasers and Electro-Optics, 2005 OSA Technical Digest Series (Optical Society of America, 2005), paper CThZ3.
  49. M. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007). [CrossRef] [PubMed]
  50. M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).
  51. S. Yoo, C. A. Codemard, Y. Jeong, J. K. Sahu, and J. Nilsson, “Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers,” Appl. Opt. 49, 1388–1399 (2010). [CrossRef] [PubMed]
  52. R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Low-threshold tunable-CW and Q-switched fiber laser operating at 1.55 μm,” Electron. Lett. 22, 159–160 (1986). [CrossRef]
  53. D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and R. V. Penty, “158-μJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier,” Opt. Lett. 22, 378–380 (1997). [CrossRef] [PubMed]
  54. I. N. Duling III, Compact Sources of Ultrashort Pulses, Vol. 18 of Cambridge Studies in Modern Optics (Cambridge University Press, 2005).
  55. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2, 58–73 (2008). [CrossRef]
  56. T. Pfeiffer and G. Veith, “40 GHz pulse generation using a widely tunable all-polarization preserving erbium fiber ring laser,” Electron. Lett. 29, 1849–1850 (1993). [CrossRef]
  57. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse-compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993). [CrossRef] [PubMed]
  58. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode locking of a fiber soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993). [CrossRef]
  59. P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991). [CrossRef]
  60. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995). [CrossRef] [PubMed]
  61. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996). [CrossRef]
  62. R. L. Farrow, D. A. V. Kliner, G. R. Hadley, and A. V. Smith, “Peak power limits on fiber amplifiers imposed by self-focusing,” Opt. Lett. 31, 3423–3425 (2006). [CrossRef] [PubMed]
  63. D. P. Hand and P. S. Russell, “Solitary thermal-shock waves and optical damage in optical fibers—the fiber fuse,” Opt. Lett. 13, 767–769 (1988). [CrossRef] [PubMed]
  64. H. L. Offerhaus, N. G. Broderick, D. J. Richardson, R. Sammut, J. Caplen, and L. Dong, “High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber,” Opt. Lett. 23, 1683–1685 (1998). [CrossRef]
  65. A. Piper, A. Malinowski, K. Furusawa, and D. J. Richardson, “High-power high-brightness mJ Q-switched ytterbium-doped fiber laser,” Electron. Lett. 40, 928–929 (2004). [CrossRef]
  66. O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, “Millijoule pulse energy Q-switched short-length fiber laser,” Opt. Lett. 32, 1551–1553 (2007). [CrossRef] [PubMed]
  67. T. V. Andersen, P. Perez-Millan, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andres, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun. 260, 251–256 (2006). [CrossRef]
  68. M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. V. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14, 1106–1112 (2006). [CrossRef] [PubMed]
  69. M. L. R. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarkson, S. Girard, and R. Moncorgé, “Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser,” Opt. Lett. 27, 1980–1982 (2002). [CrossRef]
  70. L. Pan, I. Utkin, and R. Fedosejevs, “Passively Q-switched ytterbium-doped double-clad fiber laser with a Cr4+:YAG saturable absorber,” IEEE Photon. Technol. Lett. 19, 1979–1981 (2007). [CrossRef]
  71. J. B. Lecourt, G. Martel, M. Guezo, C. Labbe, and S. Loualiche, “Erbium-doped fiber laser passively Q-switched by an InGaAs/InP multiple quantum well saturable absorber,” Opt. Commun. 263, 71–83 (2006). [CrossRef]
  72. R. Paschotta, R. Haring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 μm,” Opt. Lett. 24, 388–390 (1999). [CrossRef]
  73. J. Nilsson and B. Jaskorzynska, “Modeling and optimization of low-repetition-rate high-energy pulse amplification in cw-pumped erbium-doped fiber amplifiers,” Opt. Lett. 18, 2099–2101 (1993). [CrossRef] [PubMed]
  74. M. Y. Cheng, Y. C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, “High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-μm core highly multimode Yb-doped fiber amplifiers,” Opt. Lett. 30, 358–360 (2005). [CrossRef] [PubMed]
  75. B. Desthieux, R. I. Laming, and D. N. Payne, “111 kW (0.5 mJ) pulse amplification at 1.5-μm using a gated cascade of 3 erbium-doped fiber amplifiers,” Appl. Phys. Lett. 63, 586–588 (1993). [CrossRef]
  76. J. Limpert, S. Höfer, A. Liem, H. Zellmer, A. Tünnermann, S. Knoke, and H. Voelckel, “100-W average-power high-energy nanosecond fiber amplifier,” Appl. Phys. B 75, 477–479 (2002). [CrossRef]
  77. K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas, “Adaptive pulse shape control in a diode seeded nanosecond fiber MOPA system,” Opt. Express 14, 10996–11001 (2006). [CrossRef] [PubMed]
  78. D. N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, A. Tünnermann, and F. Salin, “Compensation of pulse–distortion in saturated laser amplifiers,” Opt. Express 16, 17637–17646 (2008). [CrossRef] [PubMed]
  79. A. Malinowski, K. T. Vu, K. K. Chen, J. Nilsson, Y. Jeong, S. Alam, D. J. Lin, and D. J. Richardson, “High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping,” Opt. Express 17, 20927–20937 (2009). [CrossRef] [PubMed]
  80. D. Lin, S. U. Alam, K. K. Chen, A. Malinowski, S. Norman, and D. J. Richardson, “100 W fully fiberised ytterbium doped master oscillator power amplifier incorporating adaptive pulse shaping,” in Proceedings of the Conference on Lasers and Electro Optics, 2009 OSA Technical Digest Series (Optical Society of America, 2009), paper CFM4.
  81. C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89, 111119 (2006). [CrossRef]
  82. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010). [CrossRef]
  83. T. Schreiber, C. K. Nielsen, B. Ortac, and J. Limpert, “Microjoule-level all-polarization-maintaining femtosecond fiber source,” Opt. Lett. 31, 574–576 (2006). [CrossRef] [PubMed]
  84. L. Dong, H. A. McKay, L. B. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17, 8962–8969 (2009). [CrossRef] [PubMed]
  85. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006). [CrossRef]
  86. K. K. Chen, S. U. Alam, J. R. Hayes, H. J. Baker, D. Hall, R. McBride, J. H. V. Price, D. J. Lin, A. Malinowski, and D. J. Richardson, “56-W frequency-doubled source at 530 nm pumped by a single-mode, single-polarization, picosecond, Yb3+-doped fiber MOPA,” IEEE Photon. Technol. Lett. 22, 893–895 (2010). [CrossRef]
  87. K. K. Chen, S. U. Alam, J. H. V. Price, J. R. Hayes, D. J. Lin, A. Malinowski, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express 18, 5426–5432 (2010). [CrossRef] [PubMed]
  88. F. Kienle, K. K. Chen, S.-U. Alam, C. B. E. Gawith, J. I. McKenzie, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “High-power, variable repetition rate, picosecond optical parametric oscillator pumped by an amplified gain-switched diode,” Opt. Express 18, 7602–7610 (2010). [CrossRef] [PubMed]
  89. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010). [CrossRef] [PubMed]
  90. J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3, 597–603 (2007). [CrossRef]
  91. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000). [CrossRef] [PubMed]
  92. A. Malinowski, A. Piper, J. H. V. Price, K. Furusawa, Y. Jeong, J. Nilsson, and D. J. Richardson, “Ultrashort-pulse Yb3+-fiber-based laser and amplifier system producing >25-W average power,” Opt. Lett. 29, 2073–2075 (2004). [CrossRef] [PubMed]
  93. J. Limpert, T. Schreiber, T. Clausnitzer, L. Zollner, H. J. Fuchs, E. B. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10, 628–638 (2002). [PubMed]
  94. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985). [CrossRef]
  95. M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259–275 (1997). [CrossRef]
  96. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32, 3495–3497 (2007). [CrossRef] [PubMed]
  97. J. Limpert, F. Röser, D. N. Schimpf, E. Seisse, T. Eidam, S. Hädrich, L. Rothhardt, C. Jauregui Misas, and A. Tünnermann, “High repetition rate gigawatt peak power fiber laser-systems: Challenges, design, and experiment,” IEEE J. Sel. Top. Quantum Electron. 15, 159–169 (2009). [CrossRef]
  98. C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11, 2832–2837 (2003). [CrossRef] [PubMed]
  99. J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5–30 (2004). [CrossRef]
  100. J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb sensitised Er doped silica optical fiber with ultrahigh transfer efficiency and gain,” Electron. Lett. 27, 1958–1959 (1991). [CrossRef]
  101. J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber laser,” IEEE J. Quantum Electron. 39, 987–994 (2003). [CrossRef]
  102. C. Codemard, D. B. S. Soh, K. Ylä-Jarkko, J. K. Sahu, M. Laroche, and J. Nilsson, “Cladding-pumped L-band phosphosilicate erbium-ytterbium co-doped fiber amplifier,” in Optical Amplifiers and Their Applications, 2003 OSA Technical Digest Series (Optical Society of America, 2003), paper TuC2.
  103. Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium co-doped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007). [CrossRef]
  104. A. Yusim, J. Barsalou, D. Gapontsev, N. S. Platonov, O. Shkurikhin, V. P. Gapontsev, Y. A. Barannikov, and F. V. Shcherbina, “100 watt single-mode CW linearly polarized all-fiber format 1.56-μm laser with suppression of parasitic lasing effects,” Proc. SPIE 5709, 69–77 (2005). [CrossRef]
  105. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient Er,Yb-doped fiber laser with 188 W free-running and >100 W tunable output power,” Opt. Express 13, 4916–4921 (2005). [CrossRef] [PubMed]
  106. G. Canat, J. C. Mollier, Y. Jaouen, and B. Dussardier, “Evidence of thermal effects in a high-power Er3+-Yb3+ fiber laser,” Opt. Lett. 30, 3030–3032 (2005). [CrossRef] [PubMed]
  107. M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009). [CrossRef]
  108. J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Fiber-laser-pumped Er:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 361–371 (2009). [CrossRef]
  109. M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency,” Opt. Lett. 34, 1507–1509 (2009). [CrossRef] [PubMed]
  110. J. W. Nicholson, A. M. DeSantolo, S. Ghalmi, J. M. Fini, J. Fleming, E. Monberg, F. DiMarcello, and S. Ramachandran, “Nanosecond pulse amplification in a higher-order-mode erbium-doped fiber amplifier,” in Proceedings of the Conference on Lasers and Electro-Optics, 2010 OSA Technical Digest Series (Optical Society of America, 2010), paper CPDB5.
  111. S. D. Jackson, “The spectroscopic and energy transfer characteristics of rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3, 466–482 (2009). [CrossRef]
  112. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6 microns,” Opt. Express 14, 6084–6090 (2006). [CrossRef] [PubMed]
  113. M. Meleshkevich, N. Platonov, D. V. Gapontsev, A. Drozhzhin, V. P. Gapontsev, and V. Sergeev, “415 W single-mode CW thulium fiber laser in all-fiber format,” in Proceedings of the European Conference on Lasers and Electro-Optics (2007), post-deadline paper CP-2-3-THU.
  114. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988). [CrossRef]
  115. R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fibre laser with high power single mode output at 2 μm,” Electron. Lett. 36, 711–712 (2000). [CrossRef]
  116. S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μmTm3+ doped silica fibre lasers,” Opt. Commun. 230, 197–203 (2004). [CrossRef]
  117. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Firth, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009). [CrossRef]
  118. T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. F. Moulton, “1-kW, all-glass Tm:fiber laser,” in Fiber Lasers VII: Technology, Systems, and Applications (2010) (Session 16: Late breaking news).
  119. L. Pearson, J. W. Kim, Z. Zhang, M. Ibsen, J. K. Sahu, and W. A. Clarkson, “High-power linearly-polarized single-frequency thulium-doped fiber master-oscillator power amplifier,” Opt. Express 18, 1607–1612 (2010). [CrossRef] [PubMed]
  120. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett. 34, 1204–1206 (2009). [CrossRef] [PubMed]
  121. S. D. Jackson, “Midinfrared holmium fiber laser,” IEEE J. Quantum Electron. 42, 187–191 (2006). [CrossRef]
  122. S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32, 241–243 (2007). [CrossRef] [PubMed]
  123. D. J. DiGiovanni and A. J. Stentz, “Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices,” U.S. patent 5,864,644 (26 January 1999).
  124. See IPG website at http://www.ipgphotonics.com.
  125. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005). [CrossRef]
  126. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344–353 (2009). [CrossRef]
  127. M. Engholm, “Materials optimization for optical fiber amplifiers and fiber lasers,” Ph.D. dissertation (Mid Sweden University, 2008).
  128. C. A. Codemard, A. Shirakawa, J. K. Sahu, S. Yoo, Y. Jeong, and J. Nilsson, “Thermal resilience of polymer-coated double-clad fiber,” in Proceedings of the European Conference on Lasers and Electro Optics (2009), paper CJ.P.5.
  129. D. C. Brown and H. J. Hoffmann, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001). [CrossRef]
  130. See PolyMicro website at http://www.polymicro.com/products/opticalfibers/products_opticalfibers_fsu_flu.htm.
  131. K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, “Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9, 714–720 (2001). [CrossRef] [PubMed]
  132. W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004). [CrossRef]
  133. J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11, 2982–2990 (2003). [CrossRef] [PubMed]
  134. T. Schreiber, C. Hagemann, J. K. Kim, T. Peschel, and S. Böhme, Annual Report (Fraunhofer-Institut für Angewandte Optik und Feinmechanik, 2009), p. 105.
  135. Y. Feng, L. R. Taylor, and D. Bonaccini Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17, 23678–23683 (2009). [CrossRef]
  136. C. A. Codemard, J. Ji, J. K. Sahu, and J. Nilsson, “100 W CW cladding-pumped Raman fiber laser at 1120 nm,” Proc. SPIE 7580, 75801N (2010). [CrossRef]
  137. B. Steinhausser, A. Brignon, E. Lallier, J. P. Huignard, and P. Georges, “High energy, single-mode, narrow-linewidth fiber laser source using stimulated Brillouin scattering beam cleanup,” Opt. Express 15, 6464–6469 (2007). [CrossRef] [PubMed]
  138. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34, 3499–3501 (2009). [CrossRef] [PubMed]
  139. W. Torruellas, Y. Chen, B. McIntosh, J. Farroni, K. Tankala, S. Webster, D. Hagan, M. J. Soileau, M. Messerly, and J. Dawson, “High peak power ytterbium-doped fiber amplifiers,” Proc. SPIE 6102, 61020N (2006). [CrossRef]
  140. A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47, 4812–4832 (2008). [CrossRef] [PubMed]
  141. M. Efimov, “Intrinsic laser-induced damage in bulk transparent dielectrics,” in Proceedings of the Conference on Lasers and Electro-Optics, 2010 OSA Technical Digest Series (Optical Society of America, 2010), paper CFG1.
  142. J. W. Dawson, R. Beach, I. Jovanovic, B. Wattellier, Z. Liao, S. Payne, and C. P. J. Barty, “Large flattened mode optical fiber for reduction of nonlinear effects in optical fiber lasers,” Proc. SPIE 5335, 132–139 (2004). [CrossRef]
  143. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23, 52–54 (1998). [CrossRef]
  144. N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol. 5, 185–196 (1999). [CrossRef]
  145. J. M. Sousa and O. G. Okhotnikov, “Multimode Er-doped fiber for single-transverse-mode amplification,” Appl. Phys. Lett. 74, 1528–1530 (1999). [CrossRef]
  146. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442–444 (2000). [CrossRef]
  147. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2, 429–448 (2008). [CrossRef]
  148. S. H. Huang, C. Zhu, C. H. Liu, X. Q. Ma, C. Swan, and A. Galvanauskas, “Power scaling of CCC fiber based lasers,” in Proceedings of the Conference on Lasers and Electro-Optics, 2009 OSA Technical Digest Series (Optical Society of America, 2009), pp. 988–989.
  149. O. Schmidt, J. Rothhardt, T. Eidam, F. Röser, J. Limpert, A. Tünnermann, K. P. Hansen, C. Jakobsen, and J. Broeng, “Single-polarization ultra-large-mode-area Yb-doped photonic crystal fiber,” Opt. Express 16, 3918–3923 (2008). [CrossRef] [PubMed]
  150. K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattsson, M. D. T. Nikolajsena, P. M. W. Skovgaard, M. H. Sorensen, M. Denninger, C. Jakobsen, and H. R. Simonsen, “Airclad fiber laser technology,” Proc. SPIE 6873, U3–U14 (2008).
  151. L. Dong, H. A. McKay, A. Marcinkevicius, L. B. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27, 1565–1570 (2009). [CrossRef]
  152. V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90, 369–372 (2008). [CrossRef]
  153. X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33, 908–910 (2008). [CrossRef] [PubMed]
  154. M. Paurisse, M. Hanna, F. Druon, P. Georges, C. Bellanger, A. Brignon, and J. P. Huignard, “Phase and amplitude control of a multimode LMA fiber beam by use of digital holography,” Opt. Express 17, 13000–13008 (2009). [CrossRef] [PubMed]
  155. C. A. Codemard, J. Nilsson, and J. K. Sahu, “Tandem pumping of large-core double-clad Ytterbium-doped fiber for control of excess gain,” in Advanced Solid State Photonics, 2010 OSA Technical Digest Series (Optical Society of America, 2010), paper AWA3.
  156. J. Nilsson, “High power fiber lasers and amplifiers,” in Optical Fiber Communications Conference, 2007 OSA Technical Digest Series (Optical Society of America, 2007), short course SC 290.
  157. R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express 15, 15674–15701 (2007). [CrossRef] [PubMed]
  158. J. R. Marciante, R. G. Roides, V. V. Shkunov, and D. A. Rockwell, “Near-diffraction-limited operation of step-index large-mode-area fiber lasers via gain filtering,” Opt. Lett. 35, 1828–1830 (2010). [CrossRef] [PubMed]
  159. J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Varallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15, 3–11 (2009). [CrossRef]
  160. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266 (2008). [CrossRef] [PubMed]
  161. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999). [CrossRef] [PubMed]
  162. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006). [CrossRef] [PubMed]
  163. F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99, 143903 (2007). [CrossRef] [PubMed]
  164. E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 20–29 (2009). [CrossRef]
  165. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm,” Opt. Express 17, 447–454 (2009). [CrossRef] [PubMed]
  166. H. Lee and G. Agrawal, “Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings,” Opt. Express 11, 3467–3472 (2003). [CrossRef] [PubMed]
  167. P. Sprangle, A. Ting, J. Penano, R. Fischer, and B. Hafizi, “Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications,” IEEE J. Quantum Electron. 45, 138–148 (2009). [CrossRef]
  168. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, “Beam combining of ytterbium fiber amplifiers,” J. Opt. Soc. Am. B 24, 1707–1715 (2007). [CrossRef]
  169. O. Schmidt, C. Wirth, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, and A. Tünnermann, “Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources,” Opt. Lett. 34, 1567–1569 (2009). [CrossRef] [PubMed]
  170. A. Shirakawa, T. Saitou, T. Sekiguchi, and K. Ueda, “Coherent addition of fiber lasers by use of a fiber coupler,” Opt. Express 10, 1167–1172 (2002). [PubMed]
  171. M. L. Minden, H. Bruesselbach, J. L. Rogers, M. S. Mangir, D. C. Jones, G. J. Dunning, D. L. Hammon, A. J. Solis, and L. Vaughan, “Self-organized coherence in fiber laser arrays,” Proc. SPIE 5335, 89–97 (2004). [CrossRef]
  172. C. J. Corcoran and F. Durville, “Experimental demonstration of a phase-locked laser array using a self-Fourier cavity,” Appl. Phys. Lett. 86, 201118 (2005). [CrossRef]
  173. J. R. Leger, G. J. Swanson, and W. B. Veldkamp, “Coherent laser addition using binary phase gratings,” Appl. Opt. 26, 4391–4399 (1987). [CrossRef] [PubMed]
  174. L. Li, A. Schülzgen, H. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Phase-locked multicore all-fiber lasers: modeling and experimental investigation,” J. Opt. Soc. Am. B 24, 1721–1728 (2007). [CrossRef]
  175. D. Kouznetsov, J. Bisson, A. Shirakawa, and K. Ueda, “Limits of coherent addition of lasers: Simple estimate,” Opt. Rev. 12, 445–447 (2005). [CrossRef]
  176. J. E. Rothenberg, “Passive coherent phasing of fiber laser arrays,” Proc. SPIE 6873, 687315 (2008). [CrossRef]
  177. W. Chang, H. G. Winful, and A. Galvanauskas, “Array size scalability of passively coherently phased fiber laser arrays,” Opt. Express 18, 9634–9642 (2010). [CrossRef] [PubMed]
  178. M. Khajavikhan, K. John, and J. R. Leger, “Experimental measurements of supermodes in superposition architectures for coherent laser beam combining,” IEEE J. Quantum Electron. 46, 1221–1231 (2010). [CrossRef]
  179. E. J. Bochove, P. K. Cheo, and G. G. King, “Self-organization in a multicore fiber laser array,” Opt. Lett. 28, 1200–1202 (2003). [CrossRef] [PubMed]
  180. C. J. Corcoran, F. Durville, and K. A. Pasch, “Coherent array of nonlinear regenerative fiber amplifiers,” IEEE J. Quantum Electron. 44, 275–282 (2008). [CrossRef]
  181. F. Kong, L. Liu, C. Sanders, Y. C. Chen, and K. K. Lee, “Phase locking of nanosecond pulses in a passively Q-switched two-element fiber laser array,” Appl. Phys. Lett. 90, 151110 (2007). [CrossRef]
  182. R. Uberna, A. Bratcher, T. G. Alley, A. D. Sanchez, A. S. Flores, and B. Pulford, “Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide,” Opt. Express 18, 13547–13553 (2010). [CrossRef] [PubMed]
  183. E. C. Cheung, J. G. Ho, G. D. Goodno, R. R. Rice, J. Rothenberg, P. Thielen, M. Weber, and M. Wickham, “Diffractive-optics-based beam combination of a phase-locked fiber laser array,” Opt. Lett. 33, 354–356 (2008). [CrossRef] [PubMed]
  184. T. M. Shay, V. Benham, J. T. Baker, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron. 13, 480–486 (2007). [CrossRef]
  185. X. H. FangM. L. Hu, B. W., Liu, L. Chai, C. Y. Wang, and A. M. Zheltikov, “Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber,” Opt. Lett. 35, 2326–2328 (2010). [CrossRef] [PubMed]
  186. I. Hartl, H. A. McKay, A. Marcinkevicius, L. Dong, and M. E. Fermann, “Multi-core leakage-channel fibers with up to 26000 μm2 combined effective mode-field area,” in Proceedings of the Conference on Lasers and Electro-Optics, Vols. 1–5 of 2009 OSA Technical Digest Series (Optical Society of America, 2009), pp. 1684–1685.
  187. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, F. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, and E. Mottay, “High-power picosecond fiber amplifier based on nonlinear spectral compression,” Opt. Lett. 30, 714–716 (2005). [CrossRef] [PubMed]
  188. K. K. Chen, S. Alam, P. Horak, C. Codemard, A. Malinowski, and D. J. Richardson, “Excitation of individual Raman orders in the visible using rectangular pulses,” Opt. Lett. 35, 2433–2435 (2010). [CrossRef] [PubMed]
  189. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19, 746–752 (2001). [CrossRef]
  190. R. Slavik, Y. Park, and J. Azana, “Long-period fiber-grating-based filter for generation of picosecond and subpicosecond transform-limited flat-top pulses,” IEEE Photon. Technol. Lett. 20, 806–808 (2008). [CrossRef]
  191. See Finisar website at www.finisar-systems.com/download_53KDmt10500001-1050004-WaveShaper-Family-product-brief-RevB.pdf.
  192. V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain, and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46, 182–190 (2010). [CrossRef]
  193. E. M. Dianov, “Bi-doped glass optical fibers: Is it a new breakthrough in laser materials?” J. Non-Cryst. Solids 355, 1861–1864 (2009). [CrossRef]
  194. S. Yoo, M. P. Kalita, A. J. Boyland, A. S. Webb, R. J. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, and M. Pal, “Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening,” Opt. Commun. 283, 3423–3427 (2010). [CrossRef]
  195. J. Adam, “Fluoride glass research in France: fundamentals and applications,” J. Fluorine Chem. 107, 265–270 (2001). [CrossRef]
  196. M. D. O’Donnell, C. A. Miller, D. Furniss, V. K. Tikhomirov, and A. B. Seddon, “Fluorotellurite glasses with improved mid-infrared transmission,” J. Non-Cryst. Solids 331, 48–57 (2003). [CrossRef]
  197. J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009). [CrossRef]
  198. S. D. Jackson, “High-power and highly-efficient diode-cladding-pumped holmium-doped fluoride fiber laser at 2.94 μm,” Opt. Lett. 34, 2327–2329 (2009). [CrossRef] [PubMed]
  199. M. Pollnau and S. D. Jackson, “Erbium 3-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 30–40 (2001). [CrossRef]
  200. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34, 3062–3064 (2009). [CrossRef] [PubMed]
  201. I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “10-Watt, pure continuous-wave, polycrystalline Cr2+:ZnSe laser,” Opt. Express 17, 2048–2056 (2009). [CrossRef] [PubMed]
  202. T. J. Carrig, “Transition-metal-doped chalcogenide lasers,” J. Electron. Mater. 31, 759–769 (2002). [CrossRef]
  203. V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” IEEE J. Quantum Electron. 42, 907–917 (2006). [CrossRef]
  204. P. A. Champert, S. V. Popov, J. R. Taylor, and J. P. Meyn, “Efficient second-harmonic generation at 384 nm in periodically poled lithium tantalate by use of a visible Yb-Er-seeded fiber source,” Opt. Lett. 25, 1252–1524 (2000). [CrossRef]
  205. P. A. Champert, S. V. Popov, and J. R. Taylor, “Power scalability to 6 W of 770 nm source based on seeded fibre amplifier and PPKTP,” Electron. Lett. 37, 1127–1129 (2001). [CrossRef]
  206. Y. Shen, S. U. Alam, K. K. Chen, D. J. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN based high power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporating active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009). [CrossRef]
  207. P. Dupriez, J. K. Sahu, A. Malinowski, Y. Jeong, D. J. Richardson, and J. Nilsson, “80 W green laser based on a frequency-doubled picosecond single-mode linearly-polarized fiber laser,” in Proceedings of the Conference on Lasers and Electro-Optics, 2006 OSA Technical Digest Series (Optical Society of America, 2006), paper CThJ1.