OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: B93–B105

Solid-state lasers: status and future [Invited]

Guenter Huber, Christian Kränkel, and Klaus Petermann  »View Author Affiliations


JOSA B, Vol. 27, Issue 11, pp. B93-B105 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000B93


View Full Text Article

Enhanced HTML    Acrobat PDF (636 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the past 50 years since Maiman’s first demonstration of the ruby laser [ Nature 187, 493 (1960) ], numerous types of laser ions and host materials have been developed with emission wavelengths from the ultraviolet to the mid-infrared spectral range. Despite the rapid progress in semiconductor laser technology, solid-state lasers still play an important role in many fields in science, industry, and daily life. In this paper we give a brief introduction into the fabrication techniques for laser crystals and the interplay between the host material and the laser ion. We review the current state of the art of some important solid-state laser concepts for continuous wave and pulsed operation modes. Finally, we present a selection of potential well-noted topics which may be important in future research and for the development of novel solid-state lasers.

© 2010 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state

History
Original Manuscript: August 9, 2010
Revised Manuscript: August 18, 2010
Manuscript Accepted: August 20, 2010
Published: October 22, 2010

Virtual Issues
(2010) Advances in Optics and Photonics

Citation
Guenter Huber, Christian Kränkel, and Klaus Petermann, "Solid-state lasers: status and future [Invited]," J. Opt. Soc. Am. B 27, B93-B105 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-11-B93


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960). [CrossRef]
  2. J. E. Geusic, H. M. Marcos, and L. G. V. Uitert, “Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium, and gadolinium garnets,” Appl. Phys. Lett. 4, 182–184 (1964). [CrossRef]
  3. T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988). [CrossRef]
  4. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988). [CrossRef]
  5. L. Esterowitz, “Diode-pumped holmium, thulium, and erbium lasers between 2 and 3 μm operating cw at room temperature,” Opt. Eng. (Bellingham) 29, 676–680 (1990). [CrossRef]
  6. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 1089–1091 (1991). [CrossRef] [PubMed]
  7. S. A. Payne, W. F. Krupke, L. K. Smith, L. D. DeLoach, and W. L. Kway, “Laser properties of Yb in fluorapatite and comparison with other Yb-doped gain media,” in Conference on Lasers and Electro-Optics, Vol. 12 of OSA Technical Digest (Optical Society of America, 1992), p. 540.
  8. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980). [CrossRef]
  9. B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw-laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983). [CrossRef]
  10. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989). [CrossRef]
  11. P. F. Moulton, “Ti-doped sapphire: A tunable solid-state laser,” Optics News 8, 9 (1982). [CrossRef]
  12. P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc. Am. B 3, 134–139 (1986). [CrossRef]
  13. G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid State Lasers, OSA Proceedings Series, M.L.Shand and H.P.Jenssen, eds. (Optical Society of America, 1989), pp. 66–70.
  14. W. Jia, B. M. Tissue, L. Lu, K. R. Hoffmann, and W. M. Yen, “Near-infrared luminescence in Cr,Ca-doped yttrium aluminium garnet,” in Advanced Solid-State Lasers, OSA Proceedings Series, G.Dubé and L.Chase, eds. (Optical Society of America, 1991), pp. 87–91.
  15. S. Kück, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in Advanced Solid-State Lasers, OSA Proceedings Series, G.Dubé and L.Chase, eds. (Optical Society of America, 1991), p. 92–94.
  16. V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-activated forsterite for near-infrared excitation: is Cr4+ the lasing ion?” Appl. Phys. Lett. 53, 2590–2592 (1988). [CrossRef]
  17. R. H. Page, L. D. DeLoach, G. D. Wilke, S. A. Payne, and W. F. Krupke, “A new class of tunable mid-IR lasers based on Cr2+-doped II-VI compounds,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 1995), paper CWH5.
  18. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer Verlag, 1990).
  19. U. Keller, “Ultrafast solid-state lasers,” in Landolt-Börnstein Laser Physics and Applications. Subvolume B: Laser Systems Part I, G.Herziger, H.Weber, and R.Proprawe, eds. (Springer Verlag, 2007), pp. 33–67.
  20. S. Kück, G. Huber, and M. Pollnau, Springer Handbook of Lasers and Optics: Solid-State Lasers (Springer, 2007), pp. 614–695.
  21. V. V. Kochurikhin, K. Shimamura, and T. Fukuda, “Czochralski growth of gadolinium vanadate single crystals,” J. Cryst. Growth 151, 393–395 (1995). [CrossRef]
  22. P. V. Klevtsov and L. P. Kozeeva, “Synthesis and X-ray and thermal studies of potassium rare-earth tungstates, KLn(WO4)2, Ln=rate-earth element,” Sov. Phys. Dokl. 14, 185–187 (1969).
  23. R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1−xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169, 600–603 (1996). [CrossRef]
  24. D. B. Joyce and F. Schmid, “Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers,” J. Cryst. Growth 312, 1138–1141 (2010). [CrossRef]
  25. V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002). [CrossRef]
  26. R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, have prepared a manuscript to be called “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides.”
  27. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010). [CrossRef] [PubMed]
  28. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993). [CrossRef]
  29. J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83, 1101–1103 (2003). [CrossRef]
  30. J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002). [CrossRef]
  31. Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31, 53–55 (2006). [CrossRef] [PubMed]
  32. T. Yoshitake, G. Shiraishi, and K. Nagayama, “Elimination of droplets using a vane velocity filter for pulsed laser ablation of FeSi2,” Appl. Surf. Sci. 197–198, 379–383 (2002). [CrossRef]
  33. H. Kühn, S. Heinrich, A. Kahn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Monocrystalline Yb3+:(Gd,Lu)2O3 channel waveguide laser at 976.8 nm,” Opt. Lett. 34, 2718–2720 (2009). [CrossRef] [PubMed]
  34. A. Kahn, S. Heinrich, H. Kühn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Low threshold monocrystalline Nd:(Gd,Lu)2O3 channel waveguide laser,” Opt. Express 17, 4412–4418 (2009). [CrossRef] [PubMed]
  35. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide-laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010). [CrossRef] [PubMed]
  36. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010). [CrossRef]
  37. B. He, J. Zhou, Q. Lou, Y. Xue, Z. Li, W. Wang, J. Dong, Y. Wei, and W. Chen, “1.75-kilowatt continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber,” Microwave Opt. Technol. Lett. 52, 1668–1671 (2010). [CrossRef]
  38. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  39. G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Wiley-Interscience, 1968).
  40. L. Fornasiero, “Nd3+- und Tm3+-dotierte sesquioxide,” Ph.D. dissertation (University of Hamburg, 1999).
  41. S. A. Payne, L. L. Chase, L.-K. Smith, L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992). [CrossRef]
  42. Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. I,” J. Phys. Soc. Jpn. 9, 753–766 (1954). [CrossRef]
  43. Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. II,” J. Phys. Soc. Jpn. 9, 766–779 (1954). [CrossRef]
  44. T. Gün, P. Metz, K. Petermann, and G. Huber, “Power scaling of GaN-laser diode pumped Pr:LiYF4 lasers,” in 4th EPS-QEOD Europhoton Conference, Technical Digest (2010), paper FrA5.
  45. V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, C. Ihli, A. Richter, E. Heumann, and G. Huber, “UV generation by intracavity frequency doubling of an OPS-pumped Pr:YLF laser with 500 mW of cw power at 360 nm,” in Photonic West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-02.
  46. V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, and C. Ihli, “522/261 nm cw generation in a Pr3+:LiYF4 laser pumped by an optically pumped semiconductor laser,” in Photonics West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-03.
  47. N.-O. Hansen, A. R. Bellancourt, U. Weichmann, and G. Huber, “Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped LiYF4,” Appl. Opt. 49, 3864–3868 (2010). [CrossRef] [PubMed]
  48. E. Heumann, S. Bär, and H. Kretschmann, “Diode-pumped continuous-wave green upconversion lasing of Er3+:LiLuF4 using multipass pumping,” Opt. Lett. 27, 1699–1701 (2002). [CrossRef]
  49. C. D. Marshall, J. A. Speth, S. A. Payne, W. F. Krupke, G. J. Quarles, V. Castillo, and B. H. T. Chai, “Ultraviolet laser emission properties of Ce3+-doped LiSrAlF6 and LiCaAlF6,” J. Opt. Soc. Am. B 11, 2054–2065 (1994). [CrossRef]
  50. R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, and I. Paiss, “Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level,” Appl. Opt. 38, 7382–7385 (1999). [CrossRef]
  51. M. A. Dubinskii, V. V. Semashko, A. K. Naumov, R. Y. Abdulsabirov, and S. L. Korableva, “Spectroscopy of a new active medium of a solid-state UV laser with broadband single-pass gain,” Laser Phys. 3, 216–217 (1993).
  52. N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94-, 1.06- and 1.34-μm laser emission and of heating effects under 809- and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82, 599–605 (2006). [CrossRef]
  53. D. Sangla, M. Castaing, F. Balembois, and P. Georges, “Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm,” Opt. Lett. 34, 2159–2161 (2009). [CrossRef] [PubMed]
  54. D. Sangla, F. Balembois, and P. Georges, “Nd:YAG laser diode-pumped directly into the emitting level at 938 nm,” Opt. Express 17, 10091–10097 (2009). [CrossRef] [PubMed]
  55. T. Kellner, C. Czeranowsky, and G. Huber, “Laser operation of Nd:YVO4 at 915 nm and 1064 nm under direct excitation of the upper laser manifold,” in Novel Lasers and Devices—Basic Aspects, OSA Technical Digest (Optical Society of America, 1999), pp. 107–109.
  56. H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11, 600–603 (2005). [CrossRef]
  57. S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.
  58. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994). [CrossRef]
  59. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007). [CrossRef]
  60. O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009). [CrossRef]
  61. J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007). [CrossRef]
  62. See www.ipgphotonics.com.
  63. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31, 754–756 (2006). [CrossRef] [PubMed]
  64. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004). [CrossRef] [PubMed]
  65. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Ultrabroadband pulses in the two-cycle regime by SESAM-assisted Kerr-lens modelocking of an all-solid-state Ti:sapphire laser,” OSA Trends Opt. Photonics Ser. 26, 358–365 (1999).
  66. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999). [CrossRef]
  67. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser: addenda,” Opt. Lett. 24, 920 (1999). [CrossRef]
  68. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373–375 (2001). [CrossRef]
  69. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005). [CrossRef]
  70. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002). [CrossRef]
  71. A. Oehler, M. Stumpf, S. Pekarek, T. Südmeyer, K. Weingarten, and U. Keller, “Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate,” Appl. Phys. B 99, 53–62 (2010). [CrossRef]
  72. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992). [CrossRef] [PubMed]
  73. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996). [CrossRef]
  74. S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16, 6397–6407 (2008). [CrossRef] [PubMed]
  75. J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express 16, 20530–20539 (2008). [CrossRef] [PubMed]
  76. T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009). [CrossRef]
  77. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010). [CrossRef] [PubMed]
  78. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400 W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17, 12230–12245 (2009). [CrossRef] [PubMed]
  79. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999). [CrossRef]
  80. A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51–54 (2003). [CrossRef] [PubMed]
  81. A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, “Stimulated Raman emission in diamond: Spectrum, gain, and angular distribution of intensity,” Phys. Rev. A 1, 628–635 (1970). [CrossRef]
  82. S. C. Rand and L. G. DeShazer, “Visible color-center laser in diamond,” Opt. Lett. 10, 481–483 (1985). [CrossRef] [PubMed]
  83. I. Friel, S. L. Clewes, H. D. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Relat. Mater. 18, 808–815 (2009). [CrossRef]
  84. G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007). [CrossRef]
  85. S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet emission from a diamond p-n junction,” Science 292, 1899–1901 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited