OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2518–2533

Fourier transform spectroscopies derived from amplitude or phase shaping of broadband laser pulses with applications to adaptive control

Matthew A. Montgomery, Erik M. Grumstrup, and Niels H. Damrauer  »View Author Affiliations


JOSA B, Vol. 27, Issue 12, pp. 2518-2533 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002518


View Full Text Article

Enhanced HTML    Acrobat PDF (696 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser pulse shapers parameterized with frequency-domain functions lead to simple single-parameter manipulations of spectral amplitude and spectral phase that can encode Fourier-transformable information in molecular signals. The first method introduced modulates the intensity within an excitation spectrum, while the second and third methods manipulate only the spectral phase. Each method operating on an input transform limited laser pulse reveals a second-harmonic spectrum in qualitative agreement with that obtainable with a Michelson interferometer. Operating on an adaptively discovered laser pulse with a complex spectral phase, all three methods reveal a second-harmonic spectrum that captures the essential control mechanism. Finally, a recently developed visualization tool is used to give insight into how these techniques affect an oscillatory and Fourier-transformable second order signal in molecules following non-resonant two-photon absorption.

© 2010 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(300.6410) Spectroscopy : Spectroscopy, multiphoton
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Spectroscopy

History
Original Manuscript: August 25, 2010
Revised Manuscript: September 28, 2010
Manuscript Accepted: September 29, 2010
Published: November 5, 2010

Citation
Matthew A. Montgomery, Erik M. Grumstrup, and Niels H. Damrauer, "Fourier transform spectroscopies derived from amplitude or phase shaping of broadband laser pulses with applications to adaptive control," J. Opt. Soc. Am. B 27, 2518-2533 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-12-2518


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley, 2000).
  2. M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley, 2003).
  3. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000). [CrossRef] [PubMed]
  4. R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992). [CrossRef] [PubMed]
  5. H. Rabitz and W. Zhu, “Optimal control of molecular motion: design, implementation, and inversion,” Acc. Chem. Res. 33, 572–578 (2000). [CrossRef] [PubMed]
  6. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997). [CrossRef]
  7. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793–1795 (1997). [CrossRef]
  8. C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997). [CrossRef]
  9. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998). [CrossRef] [PubMed]
  10. G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94, 068305 (2005). [CrossRef] [PubMed]
  11. E. C. Carroll, B. J. Pearson, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Spectral phase effects on nonlinear resonant photochemistry of 1,3-cyclohexadiene in solution,” J. Chem. Phys. 124, 114506 (2006). [CrossRef] [PubMed]
  12. B. Dietzek, B. Bruggemann, T. Pascher, and A. Yartsev, “Mechanisms of molecular response in the optimal control of photoisomerization,” Phys. Rev. Lett. 97, 258301 (2006). [CrossRef]
  13. V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge, and R. J. D. Miller, “Coherent control of retinal isomerization in bacteriorhodopsin,” Science 313, 1257–1261 (2006). [CrossRef] [PubMed]
  14. B. Dietzek, B. Brueggemann, P. Persson, and A. Yartsev, “On the excited-state multi-dimensionality in cyanines,” Chem. Phys. Lett. 455, 13–19 (2008). [CrossRef]
  15. B. Dietzek, B. Brueggemann, T. Pascher, and A. Yartsev, “Pump-shaped dump optimal control reveals the nuclear reaction pathway of isomerization of a photoexcited cyanine dye,” J. Am. Chem. Soc. 129, 13014–13021 (2007). [CrossRef] [PubMed]
  16. E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112, 6811–6822 (2008). [CrossRef] [PubMed]
  17. T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001). [CrossRef] [PubMed]
  18. J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002). [CrossRef] [PubMed]
  19. T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, “Adaptive shaping of femtosecond polarization profiles,” J. Opt. Soc. Am. B 20, 878–892 (2003). [CrossRef]
  20. J. P. Ogilvie, K. J. Kubarych, A. Alexandrou, and M. Joffre, “Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control,” Opt. Lett. 30, 911–913 (2005). [CrossRef] [PubMed]
  21. V. I. Prokhorenko, A. M. Nagy, and R. J. D. Miller, “Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study,” J. Chem. Phys. 122, 184502 (2005). [CrossRef] [PubMed]
  22. W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, “Coherent control for spectroscopy and manipulation of biological dynamics,” ChemPhysChem 6, 850–857 (2005). [CrossRef] [PubMed]
  23. M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “A general method for the dimension reduction of adaptive control experiments,” J. Phys. Chem. A 110, 6391–6394 (2006). [CrossRef] [PubMed]
  24. T. Buckup, T. Lebold, A. Weigel, W. Wohlleben, and M. Motzkus, “Singlet versus triplet dynamics of beta-carotene studied by quantum control spectroscopy,” J. Photochem. Photobiol., A 180, 314–321 (2006). [CrossRef]
  25. M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “General method for reducing adaptive laser pulse-shaping experiments to a single control variable,” J. Phys. Chem. A 111, 5126–5129 (2007). [CrossRef] [PubMed]
  26. M. A. Montgomery and N. H. Damrauer, “Elucidation of control mechanisms discovered during adaptive manipulation of [Ru(dpb)3](PF6)2 emission in the solution phase,” J. Phys. Chem. A 111, 1426–1433 (2007). [CrossRef] [PubMed]
  27. L. Bonacina, J. Extermann, A. Rondi, V. Boutou, and J. P. Wolf, “Multiobjective genetic approach for optimal control of photoinduced processes,” Phys. Rev. A 76, 023408 (2007). [CrossRef]
  28. J. Savolainen, R. Fanciulli, N. Dijkhuizen, A. L. Moore, J. Hauer, T. Buckup, M. Motzkus, and J. L. Herek, “Controlling the efficiency of an artificial light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 105, 7641–7646 (2008). [CrossRef] [PubMed]
  29. D. G. Kuroda, C. P. Singh, Z. H. Peng, and V. D. Kleiman, “Mapping excited-state dynamics by coherent control of a dendrimer’s photoemission efficiency,” Science 326, 263–267 (2009). [CrossRef] [PubMed]
  30. D. B. Strasfeld, S. H. Shim, and M. T. Zanni, “Controlling vibrational excitation with shaped mid-IR pulses,” Phys. Rev. Lett. 99, 038102 (2007). [CrossRef] [PubMed]
  31. D. B. Strasfeld, C. T. Middleton, and M. T. Zanni, “Mode selectivity with polarization shaping in the mid-IR,” New J. Phys. 11, 105046 (2009). [CrossRef]
  32. T. C. Weinacht, J. White, and P. H. Bucksbaum, “Toward strong field mode-selective chemistry,” J. Phys. Chem. A 103, 10166–10168 (1999). [CrossRef]
  33. T. Hornung, R. Meier, and M. Motzkus, “Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain,” Chem. Phys. Lett. 326, 445–453 (2000). [CrossRef]
  34. D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen, W. Kiefer, and A. Materny, “Optimal control of ground-state dynamics in polymers,” J. Chem. Phys. 116, 5231–5235 (2002). [CrossRef]
  35. J. Konradi, A. K. Singh, and A. Materny, “Mode-focusing in molecules by feedback-controlled shaping of femtosecond laser pulses,” Phys. Chem. Chem. Phys. 7, 3574–3579 (2005). [CrossRef] [PubMed]
  36. J. Konradi, A. Scaria, V. Namboodiri, and A. Materny, “Application of feedback-controlled pulse shaping for control of CARS spectra: the role of phase and amplitude modulation,” J. Raman Spectrosc. 38, 1006–1021 (2007). [CrossRef]
  37. J. Konradi, A. Gaal, A. Scaria, V. Namboodiri, and A. Materny, “Influence of electronic resonances on mode selective excitation with tailored laser pulses,” J. Phys. Chem. A 112, 1380–1391 (2008). [CrossRef] [PubMed]
  38. M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009). [CrossRef] [PubMed]
  39. S. D. Clow, U. C. Hölscher, and T. C. Weinacht, “Achieving ‘perfect’ molecular discrimination via coherent control and stimulated emission,” New J. Phys. 11, 115007 (2009). [CrossRef]
  40. M. A. Montgomery, R. R. Meglen, and N. H. Damrauer, “Robust basis functions for control from dimension reduction of adaptive pulse-shaping experiments,” in Ultrafast Phenomena XV, R.J. D.Miller, A.M.Weiner, P.Corcum, and D.M.Jonas, eds. (Springer-Verlag, 2006), pp. 255–257.
  41. J. L. White, B. J. Pearson, and P. H. Bucksbaum, “Extracting quantum dynamics from genetic learning algorithms through principal control analysis,” J. Phys. B 37, L399–L405 (2004). [CrossRef]
  42. H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, “Quantum optimally controlled transition landscapes,” Science 303, 1998–2001 (2004). [CrossRef] [PubMed]
  43. F. Langhojer, D. Cardoza, M. Baertschy, and T. Weinacht, “Gaining mechanistic insight from closed loop learning control: The importance of basis in searching the phase space,” J. Chem. Phys. 122, 014102 (2005). [CrossRef]
  44. A. Lindinger, S. M. Weber, C. Lupulescu, F. Vetter, M. Plewicki, A. Merli, L. Woste, A. F. Bartelt, and H. Rabitz, “Revealing spectral field features and mechanistic insights by control pulse cleaning,” Phys. Rev. A 71, 013419 (2005). [CrossRef]
  45. R. A. Bartels, M. M. Murnane, H. C. Kapteyn, I. Christov, and H. Rabitz, “Learning from learning algorithms: Application to attosecond dynamics of high-harmonic generation,” Phys. Rev. A 70, 043404 (2004). [CrossRef]
  46. A. Pelzer, S. Ramakrishna, and T. Seideman, “Optimal control of molecular alignment in dissipative media,” J. Chem. Phys. 126, 034503 (2007). [CrossRef] [PubMed]
  47. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular-motion,” Science 247, 1317–1319 (1990). [CrossRef] [PubMed]
  48. L. Dhar, J. A. Rogers, and K. A. Nelson, “Time-resolved vibrational spectroscopy in the impulsive limit,” Chem. Rev. (Washington, D.C.) 94, 157–193 (1994). [CrossRef]
  49. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000). [CrossRef]
  50. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990). [CrossRef] [PubMed]
  51. H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond pulse shaping, multiple-pulse spectroscopy, and optical control,” Annu. Rev. Phys. Chem. 46, 627–656 (1995). [CrossRef]
  52. D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998). [CrossRef]
  53. D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287 (1999). [CrossRef]
  54. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002). [CrossRef]
  55. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003). [CrossRef]
  56. J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004). [CrossRef]
  57. I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003). [CrossRef] [PubMed]
  58. Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. W. Xu, I. Borukhovich, C. H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A150 (2008). [CrossRef]
  59. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008). [CrossRef]
  60. S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005). [CrossRef]
  61. S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 110, 5196–5204 (2006). [CrossRef] [PubMed]
  62. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002). [CrossRef] [PubMed]
  63. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118, 9208–9215 (2003). [CrossRef]
  64. J. Hauer, H. Skenderovic, K. L. Kompa, and M. Motzkus, “Enhancement of Raman modes by coherent control in beta-carotene,” Chem. Phys. Lett. 421, 523–528 (2006). [CrossRef]
  65. R. J. Levis, Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pa. (personal communication, 2009).
  66. L. G. C. Rego, L. F. Santos, and V. S. Batista, “Coherent control of quantum dynamics with sequences of unitary phase-kick pulses,” Annu. Rev. Phys. Chem. 60, 293–320 (2009). [CrossRef]
  67. M. Seidl, M. Etinski, C. Uiberacker, and W. Jakubetz, “Pulse-train control of branching processes: Elimination of background and intruder state population,” J. Chem. Phys. 129, 234305 (2008). [CrossRef] [PubMed]
  68. J. Hauer, T. Buckup, and M. Motzkus, “Enhancement of molecular modes by electronically resonant multipulse excitation: Further progress towards mode selective chemistry,” J. Chem. Phys. 125, 061101 (2006). [CrossRef]
  69. T. Buckup, J. Hauer, C. Serrat, and M. Motzkus, “Control of excited-state population and vibrational coherence with shaped-resonant and near-resonant excitation,” J. Phys. B 41, 074024 (2008). [CrossRef]
  70. B. Bruggemann, J. A. Organero, T. Pascher, T. Pullerits, and A. Yartsev, “Control of electron transfer pathways in a dye-sensitized solar cell,” Phys. Rev. Lett. 97, 208301 (2006). [CrossRef] [PubMed]
  71. E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681–16689 (2007). [CrossRef] [PubMed]
  72. S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007). [CrossRef] [PubMed]
  73. S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009). [CrossRef] [PubMed]
  74. P. E. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett. 34, 1390–1392 (2009). [CrossRef] [PubMed]
  75. C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17, 18788–18793 (2009). [CrossRef]
  76. L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32, 2966–2968 (2007). [CrossRef] [PubMed]
  77. M. A. Montgomery and N. H. Damrauer, “A convenient method to simulate and visually represent two-photon power spectra of arbitrarily and adaptively shaped broadband laser pulses,” New J. Phys. 11, 105053 (2009). [CrossRef]
  78. E. M. Grumstrup and N. H. Damrauer are preparing a paper to be called “Time dependant perturbation theory applied to sinusoidal spectral phase modulation: insights into coherent control photophysics.”
  79. A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010). [CrossRef]
  80. J. Voll and R. de Vivie-Riedle, “Pulse trains in molecular dynamics and coherent spectroscopy: a theoretical study,” New J. Phys. 11, 105036 (2009). [CrossRef]
  81. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996).
  82. A. Galler and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Appl. Phys. B 90, 427–430 (2008). [CrossRef]
  83. J. G. a. M. Proakis and G. Dimitris, Digital Signal Processing, 2nd ed. (Macmillan, 1992).
  84. D. Pestov, V. V. Lozovoy, and M. Dantus, “Multiple independent comb shaping (MICS): phase-only generation of optical pulse sequences,” Opt. Express 17, 14351–14361 (2009). [CrossRef] [PubMed]
  85. A. Monmayrant, M. Joffre, T. Oksenhendler, R. Herzog, D. Kaplan, and P. Tournois, “Time-domain interferometry for direct electric-field reconstruction by use of an acousto-optic programmable filter and a two-photon detector,” Opt. Lett. 28, 278–280 (2003). [CrossRef] [PubMed]
  86. T. Brixner, N. H. Damrauer, B. Kiefer, and G. Gerber, “Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies,” J. Chem. Phys. 118, 3692–3701 (2003). [CrossRef]
  87. P. van der Walle, M. T. W. Milder, L. Kuipers, and J. L. Herek, “Quantum control experiment reveals solvation-induced decoherence,” Proc. Natl. Acad. Sci. U.S.A. 106, 7714–7717 (2009). [CrossRef] [PubMed]
  88. G. Katz, M. A. Ratner, and R. Kosloff, “Control by decoherence: weak field control of an excited state objective,” New J. Phys. 12, 015003 (2010). [CrossRef]
  89. A. Mitra and H. Rabitz, “Identifying mechanisms in the control of quantum dynamics through Hamiltonian encoding,” Phys. Rev. A 67, 033407 (2003). [CrossRef]
  90. A. Mitra and H. Rabitz, “Mechanistic analysis of optimal dynamic discrimination of similar quantum systems,” J. Phys. Chem. A 108, 4778–4785 (2004). [CrossRef]
  91. R. Sharp, A. Mitra, and H. Rabitz, “Principles for determining mechanistic pathways from observable quantum control data,” J. Math. Chem. 44, 142–171 (2008). [CrossRef]
  92. V. Beltrani, P. Ghosh, and H. Rabitz, “Exploring the capabilities of quantum optimal dynamic discrimination,” J. Chem. Phys. 130, 164112 (2009). [CrossRef] [PubMed]
  93. S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: Theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999). [CrossRef]
  94. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited