OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2620–2627

Extraordinary refractive properties of photonic crystals of metallic nanorods

Christos Tserkezis, Nikolaos Stefanou, and Nikolaos Papanikolaou  »View Author Affiliations

JOSA B, Vol. 27, Issue 12, pp. 2620-2627 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (375 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By applying a homogenization method based on systematic full-electrodynamic complex-band-structure calculations, we deduce the effective permittivity tensor of a uniaxial photonic crystal consisting of consecutive hexagonal arrays of aligned metallic nanorods of finite length. The form of the obtained permittivity tensor over a relatively broad low-frequency region, where homogenization is applicable, suggests the occurrence of unconventional refractive behavior, namely, negative refraction and self-collimation. This behavior is corroborated by straightforward calculation of the relevant group velocities in the actual photonic crystal. Moreover, it is shown that, in the frequency region where negative refraction occurs, a finite slab of the crystal possesses eigenmodes that form flat bands outside the light cone, as many as the number of its constituent layers. These eigenmodes allow for transfer of the evanescent components of an incident wave field to the other side of the slab, thus enabling subwavelength imaging.

© 2010 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3918) Materials : Metamaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(160.5293) Materials : Photonic bandgap materials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: September 14, 2010
Revised Manuscript: October 12, 2010
Manuscript Accepted: October 14, 2010
Published: November 16, 2010

Christos Tserkezis, Nikolaos Stefanou, and Nikolaos Papanikolaou, "Extraordinary refractive properties of photonic crystals of metallic nanorods," J. Opt. Soc. Am. B 27, 2620-2627 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Stefanou and A. Modinos, “Optical properties of thin discontinuous metal films,” J. Phys.: Condens. Matter 3, 8149-8157 (1991). [CrossRef]
  2. E. R. Encina and E. A. Coronado, “Plasmonic nanoantennas: angular scattering properties of multipole resonances in noble metal nanorods,” J. Phys. Chem. C 112, 9586-9594 (2008). [CrossRef]
  3. Y.-F. Chau, M. W. Chen, and D. P. Tsai, “Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod,” Appl. Opt. 48, 617-622 (2009). [CrossRef] [PubMed]
  4. G. Gantzounis, “Plasmon modes in axisymmetric metallic nanoparticles: a group theory analysis,” J. Phys. Chem. C 113, 21560-21565 (2009). [CrossRef]
  5. K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109, 20331-20338 (2005). [CrossRef]
  6. E. S. Kooij and B. Poelsema, “Shape and size effects in the optical properties of metallic nanorods,” Phys. Chem. Chem. Phys. 8, 3349-3357 (2006). [CrossRef]
  7. S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99, 123504 (2006). [CrossRef]
  8. B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons on metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C 111, 11516-11527 (2007). [CrossRef]
  9. W. Ni, X. Kou, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2, 677-686 (2008). [CrossRef]
  10. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110, 18243-18253 (2006). [CrossRef] [PubMed]
  11. B. Willingham, D. W. Brandl, and P. Nordlander, “Plasmon hybridization in nanorod dimers,” Appl. Phys. B: Lasers Opt. 93, 209-216 (2008). [CrossRef]
  12. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geomteries,” Nano Lett. 9, 1651-1658 (2009). [CrossRef] [PubMed]
  13. S.-D. Liu and M.-T. Cheng, “Linear plasmon ruler with tunable measurement range and sensitivity,” J. Appl. Phys. 108, 034313 (2010). [CrossRef]
  14. E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15, 7439-7447 (2007). [CrossRef] [PubMed]
  15. P. R. Evans, R. Kullock, W. R. Hendren, R. Atkinson, R. J. Pollard, and L. M. Eng, “Optical transmission properties and elecric field distribution of interacting 2D silver nanorod arrays,” Adv. Funct. Mater. 18, 1075-1079 (2008). [CrossRef]
  16. C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, “Tailoring plasmons with metallic nanorod arrays,” Phys. Rev. B 80, 125124 (2009). [CrossRef]
  17. R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73, 235402 (2006). [CrossRef]
  18. W. Dickson, G. A. Wurtz, P. Evans, D. O'Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties,” Phys. Rev. B 76, 115411 (2007). [CrossRef]
  19. M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotecnology 21, 065301 (2010). [CrossRef]
  20. D. J. Lipomi, M. A. Kats, P. Kim, S. H. Kang, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning,” ACS Nano 4, 4017-4026 (2010). [CrossRef] [PubMed]
  21. Y. Liu, J. Fan, Y.-P. Zhao, S. Shanmukh, and R. A. Dluhy, “Angle dependent surface enhanced Raman scattering obtained from an Ag nanorod array substrate,” Appl. Phys. Lett. 89, 173134 (2006). [CrossRef]
  22. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterial for biosensing,” Nature Mater. 8, 867-871 (2009). [CrossRef]
  23. G. A. Wurtz, W. Dickson, D. O'Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic couping regime,” Opt. Express 16, 7460-7470 (2008). [CrossRef] [PubMed]
  24. D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2, 2569-2576 (2008). [CrossRef]
  25. R. Kullock, W. R. Hendren, A. Hille, S. Grafström, P. R. Evans, R. J. Pollard, R. Atkinson, and L. M. Eng, “Polarization conversion through collective surface plasmons in metallic nanorod arrays,” Opt. Express 16, 21671-21681 (2008). [CrossRef] [PubMed]
  26. W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77, 233101 (2008). [CrossRef]
  27. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008). [CrossRef] [PubMed]
  28. Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16, 15439-15448 (2008). [CrossRef] [PubMed]
  29. A. Ono, J.-I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005). [CrossRef]
  30. S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2, 438-442 (2008). [CrossRef]
  31. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49-77 (1998). [CrossRef]
  32. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189-196 (2000). [CrossRef]
  33. G. Gantzounis and N. Stefanou, “Layer-multiple-scattering method for photonic crystals of nonspherical particles,” Phys. Rev. B 73, 035115 (2006). [CrossRef]
  34. C. Tserkezis and N. Stefanou, “Retrieving local effective costitutive parameters for anisotropic photonic crystals,” Phys. Rev. B 81, 115112 (2010). [CrossRef]
  35. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002).
  36. N. Stefanou, N. Papanikolaou, and C. Tserkezis, “Plasmonic nanostructures and optical metamaterials: studies by the layer-multiple-scattering method,” Physica B 405, 2967-2971 (2010). [CrossRef]
  37. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, 1976).
  38. J. F. Cornwell, Group Theory in Physics, Vol. 1 (Academic, 1984).
  39. G. Gantzounis and N. Stefanou, “Theoretical analysis of three-dimensional polaritonic photonic crystals,” Phys. Rev. B 72, 075107 (2005). [CrossRef]
  40. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1960).
  41. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  42. Th. Koschny, P. Markoš, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005). [CrossRef]
  43. C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008). [CrossRef]
  44. J. Kanungo and J. Schilling, “Experimental determination of the principal dielectric functions in silver nanowire metamaterials,” Appl. Phys. Lett. 97, 021903 (2010). [CrossRef]
  45. C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B 75, 195111 (2007). [CrossRef]
  46. C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010). [CrossRef]
  47. F. Abelès, Y. Borensztein, and T. López-Rios, “Optical properties of discontinuous thin films and rough surfaces of silver,” Festkörperprobleme--Adv. Solid St. Phys. 24, 93-117 (1984). [CrossRef]
  48. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  49. F. L. Galeener, “Submicroscopic-void resonance: the effect of internal roughness on optical absorption,” Phys. Rev. Lett. 27, 421-423 (1971). [CrossRef]
  50. R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gild films,” Phys. Rev. B 8, 3689-3703 (1973). [CrossRef]
  51. R. Kullock, S. Grafström, P. R. Evans, R. J. Pollard, and L. M. Eng, “Metallic nanorod arrays: negative refraction and optical properties explained by retarded dipolar interactions,” J. Opt. Soc. Am. B 27, 1819-1827 (2010). [CrossRef]
  52. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003). [CrossRef] [PubMed]
  53. I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW media--media with negative parameters, capable of supporting backward waves,” Microwave Opt. Technol. Lett. 31, 129-133 (2001). [CrossRef]
  54. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244-2246 (2004). [CrossRef]
  55. J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E 74, 046618 (2006). [CrossRef]
  56. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002). [CrossRef]
  57. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212-1214 (1999). [CrossRef]
  58. D. N. Chigrin, S. Enoch, C. M. Sotomayor Torres, and G. Tayeb, “Self-guiding in two-dimesional photonic crystals,” Opt. Express 11, 1203-1211 (2003). [CrossRef] [PubMed]
  59. R. Iliew, C. Etrich, and F. Lederer, “Self-collimation of light in three-dimensional photonic crystals,” Opt. Express 13, 7076-7085 (2005). [CrossRef] [PubMed]
  60. J. Shi, B. K. Juluri, S.-C. S. Lin, M. Lu, T. Gao, and T. J. Huang, “Photonic crystal composites-based wide-band optical collimator,” J. Appl. Phys. 108, 043514 (2010). [CrossRef]
  61. D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D: Appl. Phys. 40, 2635-2651 (2007). [CrossRef]
  62. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited