OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2648–2653

Bistable switching and reshaping of optical pulses in a Bragg grating cavity

Irina V. Kabakova, C. Martijn de Sterke, and Benjamin J. Eggleton  »View Author Affiliations

JOSA B, Vol. 27, Issue 12, pp. 2648-2653 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (378 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate switching of the transmission of a nanosecond optical pulse in a nonlinear Bragg grating cavity. The grating is designed with a π phase-shift in the center, which forms the cavity and enhances intensity by a factor of 45. For a high-intensity input pulse detuned from the resonance, we observe significant temporal reshaping of the output pulse: the output waveform becomes asymmetric with a sharp leading edge and an extended tail. Although the nonlinearity of a silica glass is ultrafast, the time scale of dynamic effects is determined by the linear and nonlinear cavity response times, which are tens of picoseconds. More generally, the asymmetric pulse shape such as the one presented here is expected to be a feature of all-optical self-switches based on high finesse cavities.

© 2010 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4360) Nonlinear optics : Nonlinear optics, devices
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Nonlinear Optics

Original Manuscript: July 15, 2010
Revised Manuscript: September 27, 2010
Manuscript Accepted: September 29, 2010
Published: November 12, 2010

Irina V. Kabakova, C. Martijn de Sterke, and Benjamin J. Eggleton, "Bistable switching and reshaping of optical pulses in a Bragg grating cavity," J. Opt. Soc. Am. B 27, 2648-2653 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979). [CrossRef]
  2. C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: A numerical study,” Phys. Rev. A 42, 2858–2869 (1990). [CrossRef] [PubMed]
  3. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg grating,” J. Opt. Soc. Am. B 14, 2980–2993 (1997). [CrossRef]
  4. C. J. Herbert and M. S. Malcuit, “Optical bistability in nonlinear periodic structures,” Opt. Lett. 18, 1783–1785 (1993). [CrossRef] [PubMed]
  5. H. M. Gibbs, Optical Bistability (Academic, 1985).
  6. Yosia, Y. Akano, K. Tamura, T. Mizumoto, and S. Ping, “All-optical transistor operation based on the bistability principle in nonlinear distributed GAInAsP-InP waveguide: a transient perspective,” J. Opt. Soc. Am. B 24, 1584–1588 (2007). [CrossRef]
  7. D. Pelinovsky, J. Sears, L. Brzozowski, and E. H. Sargent, “Stable all-optical limiting in nonlinear periodic structure. I. Analysis,” J. Opt. Soc. Am. B 19, 43–53 (2002). [CrossRef]
  8. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994). [CrossRef] [PubMed]
  9. S. Larochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990). [CrossRef]
  10. J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibers by UV post-processing,” Electron. Lett. 30, 1344–1345 (1994). [CrossRef]
  11. S. Radic, N. George, and G. P. Agrawal, “Theory of low-threshold optical switching in nonlinear phase-shifted periodic structures,” J. Opt. Soc. Am. B 12, 671–680 (1995). [CrossRef]
  12. S. Radic, N. George, and G. P. Agrawal, “Optical switching in λ/4-shifted nonlinear periodic structures,” Opt. Lett. 19, 1789–1791 (1994). [CrossRef] [PubMed]
  13. H. Lee and G. P. Agrawal, “Nonlinear switching of optical pulses in fiber Bragg gratings,” IEEE J. Quantum Electron. 39, 508–515 (2003). [CrossRef]
  14. I. V. Kabakova, C. M. de Sterke, and B. J. Eggleton, “Performance of field-enhanced optical switching in fiber Bragg gratings,” J. Opt. Soc. Am. B 27, 1343–1352 (2010). [CrossRef]
  15. R. P. Stanley, R. Houdre, U. Oesterle, and M. Ilegems, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246–2250 (1993). [CrossRef] [PubMed]
  16. I. V. Kabakova, B. Corcoran, J. A. Bolger, C. M. de Sterke, and B. J. Eggleton, “All-optical self-switching in optimized phase-shifted fiber Bragg grating,” Opt. Express 17, 5083–5089 (2009). [CrossRef] [PubMed]
  17. A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000). [CrossRef]
  18. A. E. Bieber, T. G. Brown, and R. C. Tiberio, “Optical switching in phase-shifted metal-semiconductor-metal Bragg reflectors,” Opt. Lett. 20, 2216–2218 (1995). [CrossRef] [PubMed]
  19. N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992). [CrossRef]
  20. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).
  21. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  22. A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003). [CrossRef]
  23. M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am. B 23, 1323–1331 (2006). [CrossRef]
  24. I. C. M. Littler, T. Grujic, and B. J. Eggleton, “Photothermal effects in fiber Bragg gratings,” Appl. Opt. 45, 4679–4685 (2006). [CrossRef] [PubMed]
  25. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap soliton,” Nat. Phys. 2, 775–780 (2006). [CrossRef]
  26. C. M. de Sterke, K. R. Jackson, and B. D. Robert, “Nonlinear coupled mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B 8, 403–412 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited