## Generation of multicolored tripartite entanglement by frequency doubling in a two-port resonator |

JOSA B, Vol. 27, Issue 12, pp. 2721-2726 (2010)

http://dx.doi.org/10.1364/JOSAB.27.002721

Enhanced HTML Acrobat PDF (141 KB)

### Abstract

Multicolored multipartite entanglement is of great importance in quantum communication and quantum information networks. In this paper, we calculate the quantum fluctuations of the fundamental frequency pump beam and second-harmonic beams in a two-port frequency doubling resonator, and investigate the tripartite continuous-variable entanglement generated by this device for the first time, to our knowledge. The quantum correlation among fundamental frequency pump beam and two harmonic beams is studied using a necessary and sufficient criterion for Gaussian entanglement states, the positivity under partial transposition. It is found that two-color tripartite entanglement exists in a large range of pump intensities and analysis frequencies.

© 2010 Optical Society of America

**OCIS Codes**

(190.2620) Nonlinear optics : Harmonic generation and mixing

(270.0270) Quantum optics : Quantum optics

(270.6570) Quantum optics : Squeezed states

**ToC Category:**

Quantum Information

**History**

Original Manuscript: May 12, 2010

Revised Manuscript: October 12, 2010

Manuscript Accepted: October 13, 2010

Published: November 18, 2010

**Citation**

Rongguo Yang, Shuqin Zhai, Kui Liu, Junxiang Zhang, and Jiangrui Gao, "Generation of multicolored tripartite entanglement by frequency doubling in a two-port resonator," J. Opt. Soc. Am. B **27**, 2721-2726 (2010)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-12-2721

Sort: Year | Journal | Reset

### References

- Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein–Podolsky–Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992). [CrossRef] [PubMed]
- Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Realization of the Einstein–Podolsky–Rosen paradox for continuous variables in nondegenerate parametric amplification,” Appl. Phys. B 55, 265–278 (1992). [CrossRef]
- W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental investigation of criteria for continuous variable entanglement,” Phys. Rev. Lett. 90, 043601 (2003). [CrossRef] [PubMed]
- O.-K. Lim and M. Saffman, “Intensity correlations and entanglement by frequency doubling in a two-port resonator,” Phys. Rev. A 74, 023816 (2006). [CrossRef]
- O.-K. Lim, B. Bol, and M. Saffman, “Observation of twin beam correlations and quadrature entanglement by frequency doubling in a two-port resonator,” EPL 78, 40004 (2007). [CrossRef]
- A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998). [CrossRef] [PubMed]
- W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H.-A. Bachor, T. Symul, and P. K. Lam, “Experimental investigation of continuous-variable quantum teleportation,” Phys. Rev. A 67, 032302 (2003). [CrossRef]
- T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A 67, 033802 (2003). [CrossRef]
- X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002). [CrossRef] [PubMed]
- Ch. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett. 88, 167902 (2002). [CrossRef] [PubMed]
- G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Using entanglement improves the precision of quantum measurements,” Phys. Rev. Lett. 87, 270404 (2001). [CrossRef]
- P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: A quantum teleportation network,” Phys. Rev. Lett. 84, 3482–3485 (2000). [CrossRef] [PubMed]
- M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156–161 (1999). [CrossRef]
- P. van Loock and S. L. Braunstein, “Telecloning of continuous quantum variables,” Phys. Rev. Lett. 87, 247901 (2001). [CrossRef] [PubMed]
- J. Zhang, C. Xie, and K. Peng, “Controlled dense coding for continuous variables using three-particle entangled states,” Phys. Rev. A 66, 032318 (2002). [CrossRef]
- J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003). [CrossRef] [PubMed]
- J. Guo, H. Zou, Z. Zhai, J. Zhang, and J. Gao, “Generation of continuous-variable tripartite entanglement using cascaded nonlinearities,” Phys. Rev. A 71, 034305 (2005). [CrossRef]
- A. S. Villar, M. Martinelli, C. Fabre, and P. Nussenzveig, “Direct production of tripartite pump-signal-idler entanglement in the above-threshold optical parametric oscillator,” Phys. Rev. Lett. 97, 140504 (2006). [CrossRef] [PubMed]
- S. Zhai, R. Yang, D. Fan, J. Guo, K. Liu, J. Zhang, and J. Gao, “Tripartite entanglement from the cavity with second-order harmonic generation,” Phys. Rev. A 78, 014302 (2008). [CrossRef]
- S. Zhai, R. Yang, K. Liu, H. Zhang, J. Zhang, and J. Gao, “Bright two-color tripartite entanglement with second harmonic generation,” Opt. Express 17, 9851–9857 (2009). [CrossRef] [PubMed]
- A. S. Coelho, F. A. S. Barbosa, K. N. Cassemiro, A. S. Villar, M. Martinelli, and P. Nussenzveig, “Three-color entanglement,” Science 326, 823–826 (2009). [CrossRef] [PubMed]
- N. B. Grosse, S. Assad, M. Mehmet, R. Schnabel, T. Symul, and P. K. Lam, “Observation of entanglement between two light beams spanning an octave in optical frequency,” Phys. Rev. Lett. 100, 243601 (2008). [CrossRef] [PubMed]
- Z. Y. Ou, “Propagation of quantum fluctuations in single-pass second-harmonic generation for arbitrary interaction length,” Phys. Rev. A 49, 2106–2116 (1994). [CrossRef] [PubMed]
- R. D. Li and P. Kumar, “Quantum-noise reduction in traveling-wave second-harmonic generation,” Phys. Rev. A 49, 2157–2166 (1994). [CrossRef] [PubMed]
- M. K. Olsen, “Continuous-variable Einstein–Podolsky–Rosen paradox with traveling-wave second-harmonic generation,” Phys. Rev. A 70, 035801 (2004). [CrossRef]
- R. Simon, “Peres–Horodecki separability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2726–2729 (2000). [CrossRef] [PubMed]
- R. F. Werner and M. M. Wolf, “Bound entangled Gaussian states,” Phys. Rev. Lett. 86, 3658–3661 (2001). [CrossRef] [PubMed]
- D. Daems, F. Bernard, N. J. Cerf, and M. I. Kolobov, “Tripartite entanglement in parametric down-conversion with spatially structured pump,” J. Opt. Soc. Am. B 27, 447–451 (2010). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.