OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2759–2765

Photon absorption in interacting quantum dots doped in nanofibers

Mahi R. Singh and Daniel Schindel  »View Author Affiliations

JOSA B, Vol. 27, Issue 12, pp. 2759-2765 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (388 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the coupling between quantum dots through the dipole–dipole interaction in photonic nanofibers manufactured by embedding a dielectric material into a photonic crystal. The embedded dielectric material is doped with an ensemble of three-level quantum dots. A probe field is applied to monitor the absorption, and a control field is applied to induce dipole moments in quantum dots. Dipoles are induced in quantum dots due to the external fields, and they interact with each other via the dipole–dipole interaction. Quantum dots also interact with the nanofiber through the electron–bound photon interaction. The absorption coefficient has been calculated using the density matrix method, and the dipole–dipole interaction has been evaluated in the mean field approximation. It is found that the absorption spectrum splits from one peak to two peaks by the dipole–dipole interaction. The splitting of peaks can be controlled by either the resonance energy of quantum dots or bound photon states of the nanofiber.

© 2010 Optical Society of America

OCIS Codes
(130.4815) Integrated optics : Optical switching devices
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(130.5296) Integrated optics : Photonic crystal waveguides
(160.5298) Materials : Photonic crystals
(200.6715) Optics in computing : Switching
(060.6718) Fiber optics and optical communications : Switching, circuit

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 26, 2010
Revised Manuscript: October 9, 2010
Manuscript Accepted: October 18, 2010
Published: November 23, 2010

Mahi R. Singh and Daniel Schindel, "Photon absorption in interacting quantum dots doped in nanofibers," J. Opt. Soc. Am. B 27, 2759-2765 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Singh, “Transparency in nanophotonic quantum wires,” J. Phys. B 42, 065503 (2009). [CrossRef]
  2. E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455–481 (2006). [CrossRef]
  3. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007). [CrossRef] [PubMed]
  4. D. Lauvernier, S. Garidel, M. Zegaoui, J. P. Vilcot, and D. Decoster, “GaAs/polymer optical nanowires: fabrication and characterisation,” Electron. Lett. 42, 217–219 (2006). [CrossRef]
  5. B. G. Lee, X. Chen, A. Biberman, X. Liu, I. Hsieh, C. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20, 398–400 (2008). [CrossRef]
  6. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008). [CrossRef]
  7. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals (Princeton U. Press, 2008).
  8. V. I. Rupasov and M. R. Singh, “Quantum gap solitons and many-polariton–atom bound states in dispersive medium and photonic bandgap,” Phys. Rev. Lett. 77, 338–341 (1996). [CrossRef] [PubMed]
  9. V. I. Rupasov and M. R. Singh, “Quantum gap solitons and soliton pinning in dispersive medium and photonic-band-gap materials: Bethe-ansatz solution,” Phys. Rev. A 54, 3614–3625 (1996). [CrossRef] [PubMed]
  10. V. A. Sautenkov, H. van Kampen, E. R. Eliel, and J. P. Woerdman, “Dipole-dipole broadened line shape in a partially excited dense atomic gas,” Phys. Rev. Lett. 77, 3327–3330 (1996). [CrossRef] [PubMed]
  11. O. G. Calderón, M. A. Antón, and F. Carreño, “Near dipole-dipole effects in a V-type medium with vacuum induced coherence,” Eur. Phys. J. D 25, 77–87 (2003). [CrossRef]
  12. T. Pohl and P. R. Berman, “Breaking the dipole blockade: Nearly resonant dipole interactions in few-atom systems,” Phys. Rev. Lett. 102, 013004 (2009). [CrossRef] [PubMed]
  13. E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006). [CrossRef]
  14. Ö. Çakir, A. A. Klyachko, and A. S. Shumovsky, “Steady-state entanglement of two atoms created by classical driving field,” Phys. Rev. A 71, 034303 (2005). [CrossRef]
  15. C. Skornia, J. von Zanthier, G. S. Agarwal, E. Werner, and H. Walther, “Monitoring the dipole-dipole interaction via quantum jumps of individual atoms,” Phys. Rev. A 64, 053803 (2001). [CrossRef]
  16. J. Evers, M. Kiffner, M. Macovei, and C. H. Keitel, “Geometry-dependent dynamics of two-type atoms via vacuum-induced coherences,” Phys. Rev. A 73, 023804 (2006). [CrossRef]
  17. S. Xie, Y. Yang, H. Chen, and S. Zhu, “Atom-atom interaction in an anisotropic photonic crystal,” J. Mod. Opt. 50, 83–112 (2003).
  18. M. R. Singh, “Transparency and spontaneous emission in a densely doped photonic band gap material,” J. Phys. B 39, 5131–5141 (2006). [CrossRef]
  19. M. R. Singh, “Switching mechanism due to the spontaneous emission cancellation in photonic bandgap materials doped with nano-particles,” Phys. Lett. A 363, 177–181 (2007). [CrossRef]
  20. M. R. Singh, “Dipole-dipole interaction in photonic-band-gap materials doped with nanoparticles,” Phys. Rev. A 75, 043809 (2007). [CrossRef]
  21. M. R. Singh, “Inhibition of two-photon absorption due to dipole–dipole interaction in nanoparticles,” Phys. Lett. A 372, 5083–5088 (2008). [CrossRef]
  22. M. R. Singh, “Controlling photon absorption in photonic nanowires via dipole–dipole interaction,” Opt. Lett. 34, 2909–2911 (2009). [CrossRef] [PubMed]
  23. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004). [CrossRef] [PubMed]
  24. J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “ac Stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005). [CrossRef] [PubMed]
  25. E. Hendry, M. Koeberg, F. Wang, H. Zhang, C. de Mello Donegá, D. Vanmaekelbergh, and M. Bonn, “Direct observation of electron-to-hole energy transfer in CdSe quantum dots,” Phys. Rev. Lett. 96, 057408 (2006). [CrossRef] [PubMed]
  26. S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43, 12772–12789 (1991). [CrossRef]
  27. P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay, “Fundamental quantum optics in structured reservoirs,” Rep. Prog. Phys. 63, 455–503 (2000). [CrossRef]
  28. K. B. Chung and S. H. Kim, “Defect modes in a two-dimensional square-lattice photonic crystal,” Opt. Commun. 209, 229–235 (2002). [CrossRef]
  29. S. John and M. Florescu, “Photonic bandgap materials: towards an all-optical micro-transistor,” J. Opt. A, Pure Appl. Opt. 3, S103–S120 (2001). [CrossRef]
  30. M. R. Singh and R. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. B 41, 015401 (2008). [CrossRef]
  31. D. Petrosyan and G. Kurizki, “Photon-photon correlations and entanglement in doped photonic crystals,” Phys. Rev. A 64, 023810 (2001). [CrossRef]
  32. K. Okamoto, Fundamentals of Optical Waveguides (Elsevier, 2006), Chap. 2.
  33. A. Ariv and P. Yeh, Photonics (Oxford U. Press, 2007).
  34. M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).
  35. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997).
  36. J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, “Linear and nonlinear optical measurements of the Lorentz local field,” Phys. Rev. Lett. 67, 972–975 (1991). [CrossRef] [PubMed]
  37. M. R. Singh, Recent Research Activities in Chemical Physics: From Atomic Scale to Macroscale, E.Paspalakis and A.F.Terzis, eds. (Transworld Research Network, 2008), Chap. 5, pp. 101–165.
  38. D. G. Angelakis, E. Paspalakis, and P. L. Knight, “Transient properties of modified reservoir-induced transparency,” Phys. Rev. A 61, 055802 (2000). [CrossRef]
  39. M. R. Singh, “Anomalous electromagnetically induced transparency in photonic-band-gap materials,” Phys. Rev. A 70, 033813 (2004). [CrossRef]
  40. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004). [CrossRef] [PubMed]
  41. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896–899 (2007). [CrossRef] [PubMed]
  42. V. A. Sautenkov, Y. V. Rostovtsev, and E. R. Eliel, “Observation of narrow Autler–Townes components in the resonant response of a dense atomic gas” Phys. Rev. A 78, 013802 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited