OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 187–196

Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al 2 O 3 : Er 3 + optical amplifiers on silicon

J. D.B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau  »View Author Affiliations


JOSA B, Vol. 27, Issue 2, pp. 187-196 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000187


View Full Text Article

Enhanced HTML    Acrobat PDF (650 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Erbium-doped aluminum oxide integrated optical amplifiers were fabricated on silicon substrates, and their characteristics were investigated for Er concentrations ranging from 0.27 to 4.2 × 10 20 cm 3 . Background losses below 0.3 dB cm at 1320 nm were measured. For optimum Er concentrations in the range of 1 to 2 × 10 20 cm 3 , an internal net gain was obtained over a wavelength range of 80 nm ( 1500 1580 nm ) , and a peak gain of 2.0 dB cm was measured at 1533 nm . The broadband and high peak gain are attributed to an optimized fabrication process, improved waveguide design, and pumping at 977 nm as opposed to 1480 nm . In a 5.4 - cm -long amplifier, a total internal net gain of up to 9.3 dB was measured. By use of a rate-equation model, an internal net gain of 33 dB at the 1533 nm gain peak and more than 20 dB for all wavelengths within the telecom C-band ( 1525 1565 nm ) are predicted for a launched signal power of 1 μ W when launching 100 mW of pump power into a 24 - cm -long amplifier. The high optical gain demonstrates that Al 2 O 3 : Er 3 + is a competitive technology for active integrated optics.

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3130) Integrated optics : Integrated optics materials
(140.4480) Lasers and laser optics : Optical amplifiers
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Integrated Optics

History
Original Manuscript: March 31, 2009
Revised Manuscript: September 19, 2009
Manuscript Accepted: September 25, 2009
Published: January 7, 2010

Citation
J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, "Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon," J. Opt. Soc. Am. B 27, 187-196 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-2-187


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Silicon Photonics: The State of the Art, G.T.Reed, ed. (Wiley, 2008). [CrossRef]
  2. T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992). [CrossRef]
  3. T. H. Hoekstra, P. V. Lambeck, H. Albers, and Th. J. A. Popma, “Sputter-deposited erbium-doped Y2O3 active optical waveguides,” Electron. Lett. 29, 581-583 (1993). [CrossRef]
  4. R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” IEEE J. Quantum Electron. 30, 2356-2360 (1994). [CrossRef]
  5. P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321-322 (1996). [CrossRef]
  6. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997). [CrossRef]
  7. A. Q. Le Quang, R. Hierle, J. Zyss, I. Ledoux, G. Cusmai, R. Costa, A. Barberis, and S. M. Pietralunga, “Demonstration of net gain at 1550 nm in an erbium-doped polymer single-mode rib waveguide,” Appl. Phys. Lett. 89, 141124 (2006). [CrossRef]
  8. A. Kahn, H. Kühn, S. Heinrich, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, Y. Kuzminykh, and G. Huber, “Amplification in epitaxially grown Er:(Gd,Lu)2O3 waveguides for active integrated optical devices,” J. Opt. Soc. Am. B 25, 1850-1853 (2008). [CrossRef]
  9. T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334-335 (1991). [CrossRef]
  10. W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990-997 (2005). [CrossRef]
  11. D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263-264, 369-381 (2000). [CrossRef]
  12. D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315-317 (1997). [CrossRef]
  13. S. Blaize, L. Bastard, C. Cassagnètes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15, 516-518 (2003). [CrossRef]
  14. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626-2628 (2004). [CrossRef] [PubMed]
  15. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886-1888 (1996). [CrossRef]
  16. C. E. Chryssou and C. W. Pitt, “Er -doped Al2O3 thin films by plasma-enhanced chemical vapor deposition (PECVD) exhibiting a 55 nm optical bandwidth,” IEEE J. Quantum Electron. 34, 282-285 (1998). [CrossRef]
  17. G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258-1266 (1996). [CrossRef]
  18. K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4 dB optical gain,” IEEE J. Quantum Electron. 45, 454-461 (2009). [CrossRef]
  19. J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B: Lasers Opt. 89, 311-318 (2007). [CrossRef]
  20. L. Agazzi, J. D. B. Bradley, F. Ay, A. Kahn, H. Scheife, G. Huber, R. M. de Ridder, K. Wörhoff, and M. Pollnau, “Energy migration governs upconversion losses in Er3+-doped integrated amplifiers,” in CLEO/EUROPE (Optical Society of America, 2009), paper CEI_3.
  21. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136, 954-957 (1964). [CrossRef]
  22. W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258-260 (1991). [CrossRef] [PubMed]
  23. E. Desurvire and J. R. Simpson, “Evaluation of I15/24 and I13/24 Stark-level energies in erbium-doped aluminosilicate glass fibers,” Opt. Lett. 15, 547-549 (1990). [CrossRef] [PubMed]
  24. G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 waveguides,” Appl. Opt. 36, 3338-3341 (1997). [CrossRef] [PubMed]
  25. S. F. Li, C. L. Song, Q. J. Xiong, and B. Ran, “A numerical analysis of gain characteristics of Er-doped Al2O3 waveguide amplifiers,” Opt. Quantum Electron. 34, 859-866 (2002). [CrossRef]
  26. S. Musa, H. J. van Weerden, T. H. Yau, and P. V. Lambeck, “Characteristics of Er-doped Al2O3 thin films deposited by reactive co-sputtering,” IEEE J. Quantum Electron. 36, 1089-1097 (2000). [CrossRef]
  27. R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Excited-state absorption at 980 nm in erbium-doped glass,” in Fiber Laser Sources and Amplifiers III, Procc. SPIE 1581, 72-79 (1991).
  28. X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited-state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68-80 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited