OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 567–576

Field-induced inhomogeneous index distribution of a nano-dispersed nematic liquid crystal metamaterial near the Freedericksz transition: Monte Carlo studies

G. Pawlik, M. Jarema, W. Walasik, A. C. Mitus, and I. C. Khoo  »View Author Affiliations


JOSA B, Vol. 27, Issue 3, pp. 567-576 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000567


View Full Text Article

Enhanced HTML    Acrobat PDF (1308 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Monte Carlo studies of the field-induced complex refractive index changes in nano-dispersed nematic liquid crystals (NLCs) exhibiting negative–positive refractive indices have been performed for various cases of applied field strengths and anchoring conditions over a broad spectral regime. The resultant field-induced spatially inhomogeneous molecular order and the corresponding metamaterial properties are obtained for various wavelengths and applied field strengths below and above the Freedericksz transition. In general, the director axis reorientation and the resultant refractive index distribution are spatially inhomogeneous, even under a uniform applied field. The detailed computations have identified parameter sets for obtaining the negative index of refraction and maximal index modulations that can be more than an order of magnitude larger than those obtainable from pure NLC systems.

© 2010 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.3710) Materials : Liquid crystals
(160.4670) Materials : Optical materials
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: November 25, 2009
Manuscript Accepted: January 11, 2010
Published: February 25, 2010

Citation
G. Pawlik, M. Jarema, W. Walasik, A. C. Mitus, and I. C. Khoo, "Field-induced inhomogeneous index distribution of a nano-dispersed nematic liquid crystal metamaterial near the Freedericksz transition: Monte Carlo studies," J. Opt. Soc. Am. B 27, 567-576 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-3-567


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, (Wiley, 2006).
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005). [CrossRef] [PubMed]
  4. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildeshev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  5. E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72, 233105 (2005). [CrossRef]
  6. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95033115 (2009). [CrossRef]
  7. J. A. Bossard, X. Liang, L. Li, D. H. Werner, B. Weiner, P. F. Cristman, A. Diaz, and I. C. Khoo “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Trans. Antennas Propag. 56, 1308-1320 (2008). [CrossRef]
  8. X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007). [CrossRef]
  9. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73, 045105 (2006). [CrossRef]
  10. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Z. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007). [CrossRef]
  11. I. C. Khoo, A. Diaz, S. Kubo, J. Liou, M. Stinger, T. Mallouk, and J. H. Park, “Nano-dispersed organic liquid and liquid crystals for all-time-scales optical switching and tunable negative- and zero-index materials,” Mol. Cryst. Liq. Cryst. 485, 934-944 (2008). [CrossRef]
  12. I. C. Khoo, D. H. Werner, X. Liang, and A. Diaz, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31, 2592-2594 (2006). [CrossRef] [PubMed]
  13. I. C. Khoo, Liquid Crystals, 2nd ed. (Wiley, 2007). [CrossRef]
  14. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471, 221-267 (2009). [CrossRef]
  15. G. Pawlik, A. C. Mitus, and A. Miniewicz, “Monte-Carlo simulations of refractive index changes in nematic liquid crystal upon spatially nonuniform illumination,” Opt. Commun. 182, 249-254 (2000). [CrossRef]
  16. K. Komorowska, G. Pawlik, A. C. Mitus, and A. Miniewicz, “Electro-optic phenomena in nematic liquid crystals studied experimentally and by Monte-Carlo simulations,” J. Appl. Phys. 90, 1836-1842 (2001). [CrossRef]
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998). [CrossRef]
  18. J. C. Maxwell Garnett, “Colors in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Ser. A 203, 385-420 (1904). [CrossRef]
  19. C. A. Guérin, P. Mallet, and A. Sentenac, “Effective-medium theory for finite-size aggregates,” J. Opt. Soc. Am. A 23, 349-358 (2006). [CrossRef]
  20. P. A. Lebwohl and G. Lasher, “Nematic-liquid-crystal order--a Monte Carlo calculation,” Phys. Rev. A 6, 426-429 (1972). [CrossRef]
  21. A. Rapini and M. Papoular, “Distorsion d'une lamelle nematique sous champ magnetique conditions dancrage aux parois,” J. Phys. (France) 30, 54-56 (1969).
  22. M. Kaczmarek, A. Dyaduysha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96, 2616-2623 (2004). [CrossRef]
  23. N. V. Tabiryan and C. Umeton, “Surface-activated photorefractive and electro-optics phenomena in liquid crystals,” J. Opt. Soc. Am. B 15, 1912-1917 (1998). [CrossRef]
  24. P. Allen and D. Tildesley, Computer Simulation of Liquids, (Clarendon Press, 1987).
  25. D. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, (Cambridge Univ. Press, 2000).
  26. W. Walasik, M. Jarema, G. Pawlik, A. C. Mitus and F. Kajzar, “Monte Carlo study of tunable negative-zero-positive index of refraction in nanosphere dispersed liquid crystals,” Proc. SPIE Vol. 7213, 72130A (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited