OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 4 — Apr. 1, 2010
  • pp: 640–647

One-dimensional fractal photonic crystal and its characteristics

Pan Xu, HuiPing Tian, and YueFeng Ji  »View Author Affiliations

JOSA B, Vol. 27, Issue 4, pp. 640-647 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (985 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a fractal structure is introduced into a one-dimensional (1D) photonic crystal to design a new structure of photonic crystal. We create three typical fractal photonic crystals: the Cantor-like fractal photonic crystal (CLFPC), golden-section fractal photonic crystal (GSFPC), and Fibonacci fractal photonic crystal (FFPC). The transmission spectra of CLFPCs, GSFPCs, and FFPCs are simulated and analyzed. The calculation result shows that the transmission spectrum and the group velocity of a CLFPC are self-similar and in accord with the self-similarity in structure, and the peak numbers in the transmission spectra of the GSFPC and FFPC also follow the principals of special fractal structures.

© 2010 Optical Society of America

OCIS Codes
(260.1180) Physical optics : Crystal optics
(220.4241) Optical design and fabrication : Nanostructure fabrication
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: September 8, 2009
Revised Manuscript: January 15, 2010
Manuscript Accepted: January 21, 2010
Published: March 8, 2010

Pan Xu, HuiPing Tian, and YueFeng Ji, "One-dimensional fractal photonic crystal and its characteristics," J. Opt. Soc. Am. B 27, 640-647 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton Univ. Press, 2007).
  2. F. Villa-Villa, J. A. Gaspar-Armenta, and A. Mendoza-Suárez, “Surface modes in one-dimensional photonic crystals that include left-handed materials,” J. Electromagn. Waves Appl. 21, 485-499 (2007). [CrossRef]
  3. C. Zheng, H. Tian, C. Li, and Y. Ji, “Tunable frequency and angular photonic crystal filter,” Proc. SPIE 6781, 678117 (2007). [CrossRef]
  4. Y. Kanamori, N. Matsuyama, and K. Hane, “Resonant-wavelength tuning of a pitch-variable 1-D photonic crystal filter at telecom frequencies,” IEEE Photon. Technol. Lett. 20, 1136-1138 (2008). [CrossRef]
  5. H. Nemec, L. Duvillaret, and F. Garet, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072-4075 (2004). [CrossRef]
  6. V. Ya. Zyryanov, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, and V. F. Shabanov, “Electro-optical switching in a one-dimensional photonic crystal,” Mol. Cryst. Liq. Cryst. 488, 1563-5287 (2008). [CrossRef]
  7. T. Krauss, “Ultracompact optical switch based on photonic crystal waveguides,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWC2.
  8. V. A. Gunyakov, V. Ya. Zyryanov, S. A. Myslivets, V. G. Arkhipkin, and V. F. Shabanov, “Electrically controllable optical switch based on one-dimensional photonic crystal,” in Proceedings of IEEE Fourth International Conference on Advanced Optoelectronics and Lasers (IEEE, 2009), pp.186-188. [CrossRef]
  9. P. Andalib and N. Granpayeh, “All-optical ultracompact photonic crystal and gate based on nonlinear ring resonators,” J. Opt. Soc. Am. B 26, 10-16 (2009). [CrossRef]
  10. H. Zou, G.-Q. Liang, and H.-Z. Wang, “Efficient all-optical dual-channel switches, logic gates, half-adder, and half-subtracter in a one-dimensional photonic hetero-structure,” J. Opt. Soc. Am. B 25, 351-360 (2008). [CrossRef]
  11. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465-473 (2008). [CrossRef]
  12. A. Di Falco, L. O'Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008). [CrossRef]
  13. J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73, 2084-2086 (1998). [CrossRef]
  14. M. P. Jiang, X. F. Jiang, X. M. Shen, D. W. Xu, and D. F. Shi, “Study on the polarization property of 1-D photonic crystal,” Chinese J. Quantum Electron. 22, 612-616 (2005).
  15. R. Puppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61-64 (2000). [CrossRef]
  16. N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E 65, 046607 (2002). [CrossRef]
  17. D. J. Feng, H. Rao, and J. Wu, “The net measure properties for symmetric Cantor sets and their applications,” Prog. Nat. Sci. 7, 172-178 (1997).
  18. S. Corviser and M. Rams, “IFS attractors and Cantor sets,” Topol. Appl. 153, 1849-1859 (2006). [CrossRef]
  19. M. Dai and L. Tian, “The structure of a Cantor-like set with overlap,” Chaos, Solitons Fractals 26, 295-301 (2005). [CrossRef]
  20. A. V. Lavrinenko, S. V. Zhukovsky, K. S. Sandomirski, and S. V. Gaponenko, “Propagation of classical waves in nonperiodic media: scaling properties of an optical Cantor filter,” Phys. Rev. E 65, 036621 (2002). [CrossRef]
  21. D. L. Jaggard and X. Sun, “Reflection from fractal multilayers,” Opt. Lett. 15, 1428-1430 (1990). [CrossRef] [PubMed]
  22. H. Walser and P. Hilton, The golden section (Mathematical Association of America, 2001).
  23. A. Arneodo, F. Argoul, E. Bacry, J. F. Muzy, and M. Tabard, “Golden mean arithmetic in the fractal branching of diffusion-limited aggregates,” Phys. Rev. Lett. 68, 3456-3459 (1992). [CrossRef] [PubMed]
  24. R. A. Dunlap, The golden ratio and Fibonacci numbers (World Scientific, 1997). [CrossRef]
  25. T. P. Srinivasan, “Fibonacci sequence, golden ratio, and a network of resistors,” Am. J. Phys. Vol. 60, 461-462 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited