OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 1139–1142

Dynamics of dissipative spatial solitons over a sharp potential

Ying-Ji He, Boris A. Malomed, Fangwei Ye, and Bambi Hu  »View Author Affiliations


JOSA B, Vol. 27, Issue 5, pp. 1139-1142 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001139


View Full Text Article

Enhanced HTML    Acrobat PDF (428 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze various scenarios of the dynamics of a spatial soliton interacting with a sharp potential barrier (SPB) in the complex Ginzburg–Landau model with the cubic-quintic nonlinearity. In optical realizations of the model, the SPB corresponds to a local notch in the refractive-index field. Possible outcomes of the interaction include splitting of the soliton, its lateral drift, formation of tree-like multi-jet patterns, and destruction of the soliton. The results suggest applications to the design of two- and multi-route splitters of light beams.

© 2010 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 25, 2010
Revised Manuscript: March 30, 2010
Manuscript Accepted: March 30, 2010
Published: April 30, 2010

Citation
Ying-Ji He, Boris A. Malomed, Fangwei Ye, and Bambi Hu, "Dynamics of dissipative spatial solitons over a sharp potential," J. Opt. Soc. Am. B 27, 1139-1142 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-5-1139


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  2. G. I. Stegeman, D. N. Christodoulides, and M. Segev, “Optical spatial solitons: historical perspectives,” IEEE J. Sel. Top. Quantum Electron. 6, 1419–1427 (2000). [CrossRef]
  3. N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, 1997).
  4. W. J. Firth, in Self-Organization in Optical Systems and Applications in Information Technology, M.A.Vorontsov and W.B.Miller, eds. (Springer-Verlag, 1995), p. 69. [CrossRef]
  5. A. Fratalocchi and G. Assanto, “Governing soliton splitting in one-dimensional lattices,” Phys. Rev. E 73, 046603 (2006). [CrossRef]
  6. R. Yang and X. Wu, “Spatial soliton tunneling, compression and splitting,” Opt. Express 16, 17759–17767 (2008). [CrossRef] [PubMed]
  7. J. Holmer, J. Marzuola, and M. Zworski, “Soliton splitting by external delta potentials,” J. Nonlinear Sci. 17, 349–367 (2007). [CrossRef]
  8. B. A. Malomed, “Complex Ginzburg–Landau equation,” in Encyclopedia of Nonlinear Science, A.Scott, ed. (Routledge, 2005) pp. 157–160; B. A. MalomedChaos 17, 037117 (2007). [CrossRef]
  9. D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006). [CrossRef] [PubMed]
  10. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg–Landau equation,” Phys. Rev. A 77, 033817 (2008). [CrossRef]
  11. J. M. Soto-Crespo, N. Akhmediev, C. Mejía-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17, 4236–4250 (2009). [CrossRef] [PubMed]
  12. H. Leblond, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg–Landau model of a two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80, 033835 (2009). [CrossRef]
  13. H. Sakaguchi, “Splitting instability of cellular structures in the Ginzburg–Landau model under feedback control,” Phys. Rev. E 80, 017202 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited