Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Collapse and revival of “Schrödinger cat” states

Not Accessible

Your library or personal account may give you access

Abstract

We study the dynamics of the Jaynes–Cummings model for two two-level systems (or qubits) interacting with a quantized single mode electromagnetic cavity (or quantum bus), extending this to the macroscopic case of an array of Nq qubits. For an initial cavity coherent state |α and the qubit system in a specified “basin of attraction” in its Hilbert space, we demonstrate the oscillation of a superposition of two macroscopic quantum states between the qubit system and the field mode. From the perspective of either the qubit or the field system, there is collapse and revival of a “Schrödinger cat” state.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Generation of the mechanical Schrödinger cat state in a hybrid atom-optomechanical system

Najmeh Etehadi Abari and Mohammad Hossein Naderi
J. Opt. Soc. Am. B 37(7) 2146-2156 (2020)

Two-mode squeezed states as Schrödinger cat-like states

E. Oudot, P. Sekatski, F. Fröwis, N. Gisin, and N. Sangouard
J. Opt. Soc. Am. B 32(10) 2190-2197 (2015)

Optimal quantum phase estimation with generalized multi-component Schrödinger cat states

Seung-Woo Lee, Su-Yong Lee, and Jaewan Kim
J. Opt. Soc. Am. B 37(8) 2423-2429 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved