OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 7 — Jul. 1, 2010
  • pp: 1309–1316

Polymeric light delivery via a C-shaped metallic aperture

Eun-Hyoung Cho, Sung-Mook Kang, J. Brian Leen, Sung-Dong Suh, Jin-Seung Sohn, Chang-Youl Moon, No-Cheol Park, Lambertus Hesselink, and Young-Pil Park  »View Author Affiliations

JOSA B, Vol. 27, Issue 7, pp. 1309-1316 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (869 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A polymeric light delivery system with a C-shaped metallic nanoaperture is proposed for the heat-assisted magnetic recording. This light delivery system has high optical efficiency and easy fabricability in the low temperature process that is compatible with the conventional magnetic head. The light delivery characteristics are demonstrated analytically and experimentally. In particular, the near-field spot size of the light delivery system was measured using the virtual scanning near-field optical microscopy (VSNOM) method, in which the probe tip geometry is not reflected. The probable spot size of the developed light delivery is under 100 nm at a wavelength of 780 nm from a polymeric light delivery with the C-shaped metallic nanoaperture.

© 2010 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(210.0210) Optical data storage : Optical data storage
(180.4243) Microscopy : Near-field microscopy
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: March 29, 2010
Manuscript Accepted: April 27, 2010
Published: June 7, 2010

Virtual Issues
June 18, 2010 Spotlight on Optics

Eun-Hyoung Cho, Sung-Mook Kang, J. Brian Leen, Sung-Dong Suh, Jin-Seung Sohn, Chang-Youl Moon, No-Cheol Park, Lambertus Hesselink, and Young-Pil Park, "Polymeric light delivery via a C-shaped metallic aperture," J. Opt. Soc. Am. B 27, 1309-1316 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, “Super-resolution fluorescence near-field scanning optical microscopy,” Appl. Phys. Lett. 49, 674–676 (1986). [CrossRef]
  2. D. P. Tsai, A. Othonos, M. Moskovits, and D. Uttamchandani, “Raman spectroscopy using a fiber optic probe with subwavelength aperture,” Appl. Phys. Lett. 64, 1768–1770 (1994). [CrossRef]
  3. N. Van Hulst, J.-A. Veerman, M. Garcia-Parajo, and L. Kuipers, “Analysis of individual (macro)molecules and proteins using near-field optics,” J. Chem. Phys. 112, 7799–7810 (2000). [CrossRef]
  4. E. Betzig, A. Harootunian, A. Lewis, and M. Isaacson, “Near-field diffraction by a slit: implications for superresolution microscopy,” Appl. Opt. 25, 1890–1900 (1986). [CrossRef] [PubMed]
  5. J. Hsu, “Near-field scanning optical microscopy studies of electronic and photonic materials and devices,” Mater. Sci. Eng. R. 33, 1–50 (2001). [CrossRef]
  6. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999). [CrossRef]
  7. W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, “Light delivery techniques for heat-assisted magnetic recordings,” Jpn. J. Appl. Phys., Part 1 42, 981–988 (2003). [CrossRef]
  8. M. Alex, A. Tselikov, T. McDaniel, N. Deeman, T. Valet, and D. Chen, “Characteristics of thermally assisted magnetic recording,” IEEE Trans. Magn. 37, 1244–1249 (2001). [CrossRef]
  9. P. L. Lu and S. H. Charap, “Magnetic viscosity in high-density recording,” J. Appl. Phys. 75, 5768–5770 (1994). [CrossRef]
  10. X. L. Shi, R. L. Thornton, and L. Hesselink, “A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL),” Proc. SPIE 4342, 320–326 (2002). [CrossRef]
  11. S.-M. Kang, J. Han, T. Kim, N.-C. Park, K.-S. Park, B.-K. Min, and Y.-P. Park, “Multiple excitation of localized surface plasmon to create a 10 nm×10 nm strong optical spot using an Au nanoparticle array-based ridge waveguide,” Opt. Express 18, 1576–1585 (2010). [CrossRef] [PubMed]
  12. I. K. Sendur and W. A. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210, 279–283 (2003). [CrossRef] [PubMed]
  13. K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210, 294–300 (2003). [CrossRef] [PubMed]
  14. K. Tanaka, M. Oumi, T. Niwa, S. Ichihara, Y. Mitsuoka, K. Nakajima, T. Ohkubo, H. Hosaka, and K. Itao, “High spatial resolution and throughput potential of an optical head with a triangular aperture for near-field optical data storage,” Jpn. J. Appl. Phys., Part 1 42, 1113–1117 (2003). [CrossRef]
  15. T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. W. Wu, G. P. Ju, W. A. Challener, and C. B. Peng, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006). [CrossRef]
  16. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nature Photon. 3, 220–224 (2009). [CrossRef]
  17. P. Hansen, B. Leen, and L. Hesselink, “Design of a sub-wavelength bent C-aperture waveguide,” Opt. Lett. 32, 1737–1739 (2007). [CrossRef] [PubMed]
  18. B. Leen, E.-H. Cho, S.-D. Suh, P. Hansen, J.-S. Sohn, S.-H. Choa, and L. Hesselink, “90° bent metallic waveguide with a tapered C-shaped aperture for use in HAMR,” Proc. SPIE 6620, 66200R (2007). [CrossRef]
  19. L. D. Hutcheson, I. A. White, and J. J. Burke, “Comparison of bending losses in integrated optical circuits,” Opt. Lett. 5, 276–278 (1980). [CrossRef] [PubMed]
  20. Remcom Inc., XFDTD 6.3 software.
  21. K. Kunz and R. Lubbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, 1996).
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1996).
  23. J. A. Matteo, Ph.D. dissertation (Stanford University, 2004).
  24. L. Landau, E. Lifchitz, and L. Pitaevskii, Electrodynamics of Continuous Media (Pergamon, 1984).
  25. S. H. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: a computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999). [CrossRef]
  26. H. Hatano and S. Kawata, “Applicability of deconvolution and nonlinear optimization for reconstructing optical images from near-field optical microscope images,” J. Microsc. 194, 230–234 (1999). [CrossRef]
  27. E. Komura, K. Shimazawa, K. Tanaka, and H. Hirabayashi, “Magnetic head and magnetic recording method,” Japanese patent application 2005-004901 (01 06, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited