Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Theoretical and experimental study of laser beam propagation in capillary tubes for non-symmetrical coupling conditions

Not Accessible

Your library or personal account may give you access

Abstract

A non-symmetrical theoretical model is used to describe the propagation of laser beams in dielectric capillary waveguides under non-ideal coupling conditions. The displacement of the laser beam focusing point from the capillary axis, the deviation of the transverse energy distribution from a symmetric one, and an angle of incidence different from zero modify, through the excitation and beating of several modes, the energy repartition during the propagation in the waveguides. The results of modeling are in very good agreement with experimental results, obtained with a low-intensity laser beam on a test bench, where good control of the laser energy distribution in the focal plane, the focusing point position, and the angle of incidence was achieved.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Experimental study of short high-intensity laser-pulse monomode propagation in centimeter-long capillary tubes

C. Courtois, B. Cros, G. Malka, G. Matthieussent, J. R. Marquès, N. Blanchot, and J. L. Miquel
J. Opt. Soc. Am. B 17(5) 864-867 (2000)

Gas-filled capillary discharge waveguides

D. J. Spence, A. Butler, and S. M. Hooker
J. Opt. Soc. Am. B 20(1) 138-151 (2003)

Simulations of the propagation of high-intensity laser pulses in discharge-ablated capillary waveguides

D. J. Spence and S. M. Hooker
J. Opt. Soc. Am. B 17(9) 1565-1570 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (54)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.