OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 8 — Aug. 1, 2010
  • pp: 1594–1602

Testing quantum randomness in single-photon polarization measurements with the NIST test suite

David Branning and Matthew Bermudez  »View Author Affiliations

JOSA B, Vol. 27, Issue 8, pp. 1594-1602 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (342 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A binary sequence was constructed from 1.7 × 10 7 polarization measurements of single photons from a spontaneous parametric downconversion source, under pumping conditions similar to those used in optical quantum cryptography. To search for correlations in the polarization measurement outcomes, we subjected the sequence to a suite of tests developed at the National Institute of Standards and Technology (NIST) for the assessment of algorithmic random-number generators. The bias of the sequence was low enough to allow all fifteen tests to be applied directly to the polarization outcomes without using any numerical unbiasing procedures. No statistically significant deviations from randomness were observed, other than those related to this small uncorrected bias.

© 2010 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: March 11, 2010
Revised Manuscript: June 14, 2010
Manuscript Accepted: June 26, 2010
Published: July 21, 2010

David Branning and Matthew Bermudez, "Testing quantum randomness in single-photon polarization measurements with the NIST test suite," J. Opt. Soc. Am. B 27, 1594-1602 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Scheel, “Single-photon sources—an introduction,” J. Mod. Opt. 56, 141–160 (2009). [CrossRef]
  2. L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274–S282 (1999). [CrossRef]
  3. A. Zeilinger, “Experiment and the foundations of quantum physics,” Rev. Mod. Phys. 71, S288–S297 (1999). [CrossRef]
  4. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  5. V. Scarani, H. Bechmann-Pasquinucci, N. Cerf, M. Dusek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009). [CrossRef]
  6. A. Steane, “Quantum computing,” Rep. Prog. Phys. 61, 117–173 (1998). [CrossRef]
  7. A. Galindo and M. A. Martín-Delgado, “Information and computation: classical and quantum aspects,” Rev. Mod. Phys. 74, 347–423 (2002). [CrossRef]
  8. T. Erber, “Testing the randomness of quantum mechanics: nature’s ultimate cryptogram?” Ann. N.Y. Acad. Sci. 755, 748–756 (1995). [CrossRef]
  9. M. P. Silverman, W. Strange, C. R. Silverman, and T. C. Lipscombe, “Tests of alpha-, beta-, and electron capture decays for randomness,” Phys. Lett. A 262, 265–273 (1999). [CrossRef]
  10. M. P. Silverman and W. Strange, “Experimental tests for randomness of quantum decay examined as a Markov process,” Phys. Lett. A 272, 1–9 (2000). [CrossRef]
  11. M. P. Silverman, W. Strange, C. R. Silverman, and T. C. Lipscombe, “Tests for randomness of spontaneous quantum decay,” Phys. Rev. A 61, 042106 (2000). [CrossRef]
  12. A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden, “Optical quantum random number generator,” J. Mod. Opt. 47, 595–598 (2000).
  13. H.-Q. Ma, Y. Xie, and L.-A. Wu, “Random number generation based on the time of arrival of single photons,” Appl. Opt. 44, 7760–7763 (2005). [CrossRef] [PubMed]
  14. M. Stipcevid and B. Medved Rogina, “Quantum random number generator based on photonic emission in semiconductors,” Rev. Sci. Instrum. 78, 045104 (2007). [CrossRef]
  15. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008). [CrossRef]
  16. H.-Q. Ma, S.-M. Wang, D. Zhang, J.-T. Chang, L.-L. Ji, Y.-X. Hou, and L.-A. Wu, “A Random number generator based on quantum entangled photon pairs,” Chin. Phys. Lett. 21, 1961–1964 (2004). [CrossRef]
  17. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact random number generator,” Rev. Sci. Instrum. 71, 1675–1680 (2000). [CrossRef]
  18. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications (revised),” Natl. Inst. Stand. Technol. (U. S.) Spec. Publ. 800-22rev1 (2008) http://csrc. nist. gov/groups/ST/toolkit/rng/documentation_software. html.
  19. D. C. Burnham and D. L. Weinberg, “Observation of simutaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970). [CrossRef]
  20. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).
  21. C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986). [CrossRef] [PubMed]
  22. D. Branning, S. Bhandari, and M. Beck, “Low-cost coincidence-counting electronics for undergraduate quantum optics,” Am. J. Phys. 77, 667–670 (2009). [CrossRef]
  23. There is an error in the current NIST publication concerning this test: in section , although all of the formulae appear to be correct, the last three tables of probabilities (for M=512, 1000, and 10000) are not. The source code for the Statistical Test Suite provided by NIST, to the extent that it makes use of these incorrect probabilities, is also in error.
  24. S.-J. Kim, K. Umeno, and A. Hasegawa, On the NIST Statistical Test Suite for RandomnessIEICE Tech. Rep. (IEICE, 2003) Vol. 103, 21–27.
  25. S.-J. Kim, K. Umeno, and A. Hasegawa, Corrections of the NIST Statistical Test Suite for Randomness Report 2004/018 (Cryptology ePrint Archive, 2004).
  26. The current NIST publication also contains an error regarding this test: on page 2–32, Eq. , the absolute value of Sk should be divided by n.
  27. J. Von Neumann, “Various techniques used in connection with random digits,” Nat. Bur. Stand. (U. S.) Appl. Math Series No. 12 (GPO, 1951) pp. 36–38.
  28. Y. Peres, “Iterating Von Neumann’s procedure for extracting random bits,” Ann. Stat. 20, 590–597 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited