OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 8 — Aug. 1, 2010
  • pp: 1680–1687

From plasmonic nanoantennas to split-ring resonators: tuning scattering strength

Anders Pors, Morten Willatzen, Ole Albrektsen, and Sergey I. Bozhevolnyi  »View Author Affiliations

JOSA B, Vol. 27, Issue 8, pp. 1680-1687 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (921 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Evolution of the absorption and scattering cross sections, quality-factor (Q-factor), and field enhancement of three-dimensional retardation-based plasmonic resonators being transformed from straight gold nanorod antennas to split-ring resonators by bending is considered. The optical resonances are confirmed to be of plasmonic origin and are specifically shown to be related to the formation of standing waves of short-range surface plasmon polaritons supported by straight and bent nanorods. We verify that by bending nanoantennas it is possible to reduce and ultimately, in the split-ring resonator limit, practically eliminate their scattering at the fundamental resonance, resulting in a substantial increase in the corresponding Q-factors. The decrease in scattering by bending is connected with the attenuation of the electric-dipole response in favor of a magnetic-dipole one, leading to Q-factors exceeding the quasi-static limit by a factor of 1.7 . Simultaneously, the structures exhibit local field enhancements of > 50 .

© 2010 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(290.0290) Scattering : Scattering
(290.3700) Scattering : Linewidth

ToC Category:

Original Manuscript: May 11, 2010
Revised Manuscript: June 10, 2010
Manuscript Accepted: June 23, 2010
Published: July 30, 2010

Anders Pors, Morten Willatzen, Ole Albrektsen, and Sergey I. Bozhevolnyi, "From plasmonic nanoantennas to split-ring resonators: tuning scattering strength," J. Opt. Soc. Am. B 27, 1680-1687 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2, 136–159 (2008). [CrossRef]
  3. T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancement,” Phys. Rev. B 75, 073402 (2007). [CrossRef]
  4. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969). [CrossRef]
  5. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry–Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009). [CrossRef] [PubMed]
  6. T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration,” Phys. Rev. B 77, 115420 (2008). [CrossRef]
  7. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express 15, 10869–10877 (2007). [CrossRef] [PubMed]
  8. T. Søndergaard and S. I. Bozhevolnyi, “Strip and gap plasmon polariton optical resonators,” Phys. Status Solidi B 245, 9–19 (2008). [CrossRef]
  9. J. Jung and T. Søndergaard, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79, 035401 (2009). [CrossRef]
  10. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006). [CrossRef] [PubMed]
  11. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997). [CrossRef] [PubMed]
  12. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  13. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005). [CrossRef] [PubMed]
  14. S. D. Liu, Z. S. Zhang, and Q. Q. Wang, “High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation,” Opt. Express 17, 2906–2917 (2009). [CrossRef] [PubMed]
  15. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006). [CrossRef] [PubMed]
  16. H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split-ring resonator metamaterials,” Phys. Status Solidi B 244, 1256–1261 (2007). [CrossRef]
  17. J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic and electric excitations in split ring resonators,” Opt. Express 15, 17881–17890 (2007). [CrossRef] [PubMed]
  18. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004). [CrossRef] [PubMed]
  19. M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2, 614–617 (2008). [CrossRef]
  20. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Shultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef] [PubMed]
  21. A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75, 085436 (2007). [CrossRef]
  22. G. D. Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Efficient suppression of radiation damping in resonant retardation-based plasmonic structures,” Phys. Rev. B 79, 113410 (2009). [CrossRef]
  23. G. D. Valle, T. Søndergaard, and S. I. Bozhevolnyi, “High-Q plasmonic resonators based on metal split nanocylinders,” Phys. Rev. B 80, 235405 (2009). [CrossRef]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  25. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  26. G. D. Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express 16, 6867–6876 (2008). [CrossRef] [PubMed]
  27. J. D. Jackson, Classical Electrodynamics (Wiley, 1962).
  28. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005). [CrossRef] [PubMed]
  29. P. Berini and J. Lu, “Curved long-range surface plasmon-polariton waveguides,” Opt. Express 14, 2365–2371 (2006). [CrossRef] [PubMed]
  30. Y. Zeng, C. Dineen, and J. V. Moloney, “Magnetic dipole moments in single and coupled split-ring resonators,” Phys. Rev. B 81, 075116 (2010). [CrossRef]
  31. M. Kerker, D. S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata,” Appl. Opt. 19, 4159–4174 (1980). [CrossRef] [PubMed]
  32. K. Kneipp, R. R. Dasari, and Y. Wang, “Near-infrared surface-enhanced Raman scattering (NIR SERS) on colloidal silver and gold,” Appl. Spectrosc. 48, 951–955 (1994). [CrossRef]
  33. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006). [CrossRef] [PubMed]
  34. E. Feigenbaum and M. Orenstein, “Ultrasmall volume plasmons, yet with complete retardation effects,” Phys. Rev. Lett. 101, 163902 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited