OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 9 — Sep. 1, 2010
  • pp: 1693–1697

Plasmon resonance modes in two-dimensional arrays of metallic nanopillars

Hari P. Paudel, Mahdi Farrokh Baroughi, and Khadijeh Bayat  »View Author Affiliations

JOSA B, Vol. 27, Issue 9, pp. 1693-1697 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (536 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface plasmon polaritons (SPPs) and localized plasmon resonance modes in two-dimensional arrays of silver nanopillars on silver surface were analyzed using the three-dimensional finite-difference time domain method. What we believe to be a new type of plasmon resonance modes at oblique incident angle for p-polarized light was observed in two-dimensional arrays of silver nanopillars in a square lattice. This resonance mode is associated with two SPP-like electric field patterns along the metal surface. We found that this resonance mode is localized and excited by the transverse polarization mode of nanopillars. Using Poynting vector plots, it was observed that the plasmon resonances in arrays of nanopillars are always associated with large energy cyclones near the nanopillars leading to light absorption.

© 2010 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(050.5298) Diffraction and gratings : Photonic crystals
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: March 19, 2010
Manuscript Accepted: June 3, 2010
Published: August 5, 2010

Hari P. Paudel, Mahdi Farrokh Baroughi, and Khadijeh Bayat, "Plasmon resonance modes in two-dimensional arrays of metallic nanopillars," J. Opt. Soc. Am. B 27, 1693-1697 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “review article Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  2. I. Breukelaar, R. Charbonneau, and P. Berinia, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006). [CrossRef]
  3. G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8, 2074–2079 (2008). [CrossRef]
  4. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  5. J. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots Induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005). [CrossRef] [PubMed]
  6. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into as silicon solar cell by nanodisk plasmon,” Appl. Phys. Lett. 92, 053110 (2008). [CrossRef]
  7. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008). [CrossRef]
  8. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals,” J. Lightwave Technol. 17, 2096–2112 (1999). [CrossRef]
  9. G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction grating for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006). [CrossRef]
  10. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996). [CrossRef]
  11. H. Raether, Surface Plasmon on Smooth and Rough Surface and on Grating (Springer-Verlag, 1988).
  12. H. P. Paudel, K. Bayat, M. F. Baroughi, S. May, and D. W. Galipeau, “Geometric dependence of field enhancement in 2D metallic photonic crystals,” Opt. Express 17, 22179–22189 (2009). [CrossRef] [PubMed]
  13. R. W. Wood, “On the remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. R. Soc. London, Ser. A 18, 269–275 (1902).
  14. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces,” J. Opt. Soc. Am. 31, 213–222 (1941). [CrossRef]
  15. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London, Ser. A 79, 399–416 (1907). [CrossRef]
  16. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965). [CrossRef]
  17. F. J. García-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Ríos, T. Fournier, and B. Panneties, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999). [CrossRef]
  18. T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Panneties, “Surface shape resonance in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998). [CrossRef]
  19. T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polaritons resonance in triangular-groove metal gratings,” Phys. Rev. B 80, 195407 (2009). [CrossRef]
  20. S. A. Maier, Plasmonics: Fundamentals and Application (Springer, 2007).
  21. A. Taflove, Computational Electrodynamics: Finite-Difference Time-Domain Method (Artech House, 1995).
  22. http://www.emexplorer.net.
  23. W. Wunderlich, “Physical constants of poly(methyl methacrylate),” in Polymer Handbook, J.Brandrup, E.H.Immergut, and E.A.Grulke, eds. (Wiley, 1999).
  24. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constant of Solid, E.D.Palik, ed. (Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited