OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 9 — Sep. 1, 2010
  • pp: 1799–1803

Quantum discord induced by white noises

Jia-sen Jin, Chang-shui Yu, Pei Pei, and He-shan Song  »View Author Affiliations


JOSA B, Vol. 27, Issue 9, pp. 1799-1803 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001799


View Full Text Article

Enhanced HTML    Acrobat PDF (997 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discuss the creation of quantum discord between two two-level atoms trapped in an optical cavity in a noisy environment. It is shown that nonzero steady-state quantum discord between atoms can be obtained when the white-noise field is separately imposed on atoms or cavity mode, while the steady-state quantum discord reaches zero if both cavity mode and atoms are driven simultaneously by white-noise fields. In particular, we demonstrate that white-noise field in different cases can play a variously constructive role in the generation of quantum discord.

© 2010 Optical Society of America

OCIS Codes
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: May 28, 2010
Revised Manuscript: July 15, 2010
Manuscript Accepted: July 15, 2010
Published: August 12, 2010

Citation
Jia-sen Jin, Chang-shui Yu, Pei Pei, and He-shan Song, "Quantum discord induced by white noises," J. Opt. Soc. Am. B 27, 1799-1803 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-9-1799


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef] [PubMed]
  2. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef] [PubMed]
  3. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef] [PubMed]
  4. H. Ollivier and W. H. Zurek, “Quantum discord: A measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002). [CrossRef] [PubMed]
  5. L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001). [CrossRef]
  6. V. Vedral, “Classical correlations and entanglement in quantum measurements,” Phys. Rev. Lett. 90, 050401 (2003). [CrossRef] [PubMed]
  7. S. Luo, “Quantum discord for two-qubit systems,” Phys. Rev. A 77, 042303 (2008). [CrossRef]
  8. M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010). [CrossRef]
  9. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999). [CrossRef]
  10. D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000). [CrossRef] [PubMed]
  11. A. Datta, S. T. Flammia, and C. M. Caves, “Entanglement and the power of one qubit,” Phys. Rev. A 72, 042316 (2005). [CrossRef]
  12. A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008). [CrossRef] [PubMed]
  13. B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008). [CrossRef] [PubMed]
  14. L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009). [CrossRef]
  15. L. Mazzola, S. Maniscalco, K.-A. Suominen, and B. M. Garraway, “Reservoir cross-over in entanglement dynamics,” Quantum Inf. Process. 8, 577–585 (2009). [CrossRef]
  16. H. M. Wiseman and G. J. Milburn, “Quantum theory of optical feedback via homodyne detection,” Phys. Rev. Lett. 70, 548–551 (1993). [CrossRef] [PubMed]
  17. S. Mancini, D. Vitali, P. Tombesi, and R. Bonifacio, “Stochastic control of quantum coherence,” Europhys. Lett. 60, 498–504 (2002). [CrossRef]
  18. P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995). [CrossRef] [PubMed]
  19. A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,” Phys. Rev. A 54, 1098–1105 (1996). [CrossRef] [PubMed]
  20. M. B. Plenio, V. Vedral, and P. L. Knight, “Quantum error correction in the presence of spontaneous emission,” Phys. Rev. A 55, 67–71 (1997). [CrossRef]
  21. D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998). [CrossRef]
  22. A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762–1765 (2000). [CrossRef] [PubMed]
  23. T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009). [CrossRef] [PubMed]
  24. T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009). [CrossRef]
  25. T. Werlang and G. Rigolin, “Thermal and magnetic quantum discord in Heisenberg models,” Phys. Rev. A 81, 044101 (2010). [CrossRef]
  26. A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acín, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010). [CrossRef]
  27. B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010). [CrossRef]
  28. L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010). [CrossRef] [PubMed]
  29. L. Mazzola, J. Piilo, and S. Maniscalco, “Frozen discord in non-Markovian depolarizing channels,” arXiv:1006.1805.
  30. M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002). [CrossRef] [PubMed]
  31. X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-assisted preparation of entangled atoms,” Phys. Rev. A 68, 052304 (2003). [CrossRef]
  32. J. B. Xu and S. B. Li, “Control of the entanglement of two atoms in an optical cavity via white noise,” New J. Phys. 7, 72 (2005). [CrossRef]
  33. P. Giorda and M. G. A. Paris, “Gaussian quantum discord,” Phys. Rev. Lett. 105, 020503 (2010). [CrossRef] [PubMed]
  34. S. Hamieh, R. Kobes, and H. Zaraket, “Positive-operator-valued measure optimization of classical correlations,” Phys. Rev. A 70, 052325 (2004). [CrossRef]
  35. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006). [CrossRef] [PubMed]
  36. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23, 247–249 (1998). [CrossRef]
  37. J.-s. Jin, C.-s. Yu, P. Pei, and H.-s. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A 81, 042309 (2010). [CrossRef]
  38. C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom-cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000). [CrossRef] [PubMed]
  39. P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000). [CrossRef] [PubMed]
  40. M. Forster, S. Winkler, and S. Wolf, “Distilling nonlocality,” Phys. Rev. Lett. 102, 120401 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited