OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 9 — Sep. 1, 2010
  • pp: 1849–1856

Monte Carlo studies of the intrinsic second hyperpolarizability

Shoresh Shafei, Mark C. Kuzyk, and Mark G. Kuzyk  »View Author Affiliations

JOSA B, Vol. 27, Issue 9, pp. 1849-1856 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3267 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The first- and second-order hyperpolarizabilities have been extensively studied to identify universal properties near the fundamental limit. Here, we employ the Monte Carlo method to study the fundamental limit of the second hyperpolarizability. As was found for the first hyperpolarizability, the largest values of the second hyperpolarizability approach the calculated fundamental limit. The character of transition moments and energies of the energy eigenstates are investigated near the second hyperpolarizability’s upper bounds using the missing state analysis, which assesses the role of each pair of states in their contribution. In agreement with the three-level ansatz, our results indicate that only three states (ground and two excited states) dominate when the second hyperpolarizability is near the limit.

© 2010 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.4900) Atomic and molecular physics : Oscillator strengths
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Atomic and Molecular Physics

Original Manuscript: June 8, 2010
Revised Manuscript: July 19, 2010
Manuscript Accepted: July 20, 2010
Published: August 18, 2010

Virtual Issues
August 20, 2010 Spotlight on Optics

Shoresh Shafei, Mark C. Kuzyk, and Mark G. Kuzyk, "Monte Carlo studies of the intrinsic second hyperpolarizability," J. Opt. Soc. Am. B 27, 1849-1856 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85, 1218–1221 (2000). [CrossRef] [PubMed]
  2. M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities,” Opt. Lett. 25, 1183–1185 (2000). [CrossRef]
  3. M. G. Kuzyk, “Quantum limits of the hyper-Rayleigh scattering susceptibility,” IEEE J. Sel. Top. Quantum Electron. 7, 774–780 (2001). [CrossRef]
  4. J. Zhou and M. G. Kuzyk, “Intrinsic hyperpolarizabilities as a figure of merit for electro-optic molecules,” J. Phys. Chem. C 112, 7978–7982 (2008). [CrossRef]
  5. M. G. Kuzyk, “Using fundamental principles to understand and optimize nonlinear-optical materials,” J. Mater. Chem. 19, 7444–7465 (2009). [CrossRef]
  6. M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities: erratum,” Opt. Lett. 28, 135–137 (2003). [CrossRef]
  7. M. G. Kuzyk, “Erratum: Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 90, 039902 (2003). [CrossRef]
  8. H. Kang, A. Facchetti, P. Zhu, H. Jiang, Y. Yang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, and T. J. Marks, “Exceptional molecular hyperpolarizabilities in twisted π-electron system chromophores,” Angew. Chem., Int. Ed. 44, 7922–7925 (2005). [CrossRef]
  9. H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. F. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: Synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129, 3267–3286 (2007). [CrossRef] [PubMed]
  10. K. Tripathy, J. Pérez Moreno, M. G. Kuzyk, B. J. Coe, K. Clays, and A. M. Kelley, “Why hyperpolarizabilities fall short of the fundamental quantum limits,” J. Chem. Phys. 121, 7932–7945 (2004). [CrossRef] [PubMed]
  11. J. Zhou, M. G. Kuzyk, and D. S. Watkins, “Pushing the hyperpolarizability to the limit,” Opt. Lett. 31, 2891–2893 (2006). [CrossRef] [PubMed]
  12. J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76, 053831 (2007). [CrossRef]
  13. J. Pérez-Moreno, Y. Zhao, K. Clays, and M. G. Kuzyk, “Modulated conjugation as a means for attaining a record high intrinsic hyperpolarizability,” Opt. Lett. 32, 59–61 (2007). [CrossRef]
  14. J. Pérez-Moreno, Y. Zhao, K. Clays, M. G. Kuzyk, Y. Shen, L. Qiu, J. Hao, and K. Guo, “Modulated conjugation as a means of improving the intrinsic hyperpolarizability,” J. Am. Chem. Soc. 131, 5084–5093 (2009). [CrossRef] [PubMed]
  15. M. G. Kuzyk and D. S. Watkins, “The effects of geometry on the hyperpolarizability,” J. Chem. Phys. 124, 244104 (2006). [CrossRef] [PubMed]
  16. D. S. Watkins and M. G. Kuzyk, “Optimizing the hyperpolarizability tensor using external electromagnetic fields and nuclear placement,” J. Chem. Phys. 131, 064110 (2009). [CrossRef] [PubMed]
  17. M. C. Kuzyk and M. G. Kuzyk, “Monte Carlo studies of the fundamental limits of the intrinsic hyperpolarizability,” J. Opt. Soc. Am. B 25, 103–110 (2008). [CrossRef]
  18. X. Hu, D. Xiao, S. Keinan, I. Asselberghs, M. J. Therien, K. Clays, W. Yang, and D. N. Beratan, “Predicting the frequency dispersion of electronic hyperpolarizabilities on the basis of absorption data and Thomas–Kuhn sum rules,” J. Phys. Chem. C 114, 2349–2359 (2010). [CrossRef]
  19. A. D. Slepkov, F. A. Hegmann, S. Eisler, E. Elliot, and R. R. Tykwinski, “The surprising nonlinear optical properties of conjugated polyyne oligomers,” J. Chem. Phys. 120, 6807–6810 (2004). [CrossRef] [PubMed]
  20. J. C. May, J. H. Lim, I. Biaggio, N. N. P. Moonen, T. Michinobu, and F. Diederich, “Highly efficient third-order optical nonlinearities in donor-substituted cyanoethynylethene molecules,” Opt. Lett. 30, 3057–3059 (2005). [CrossRef] [PubMed]
  21. J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90, 251106 (2007). [CrossRef]
  22. J. Pérez-Moreno, K. Clays, and M. G. Kuzyk, “A new dipole-free sum-over-states expression for the second hyperpolarizability,” J. Chem. Phys. 128, 084109 (2008). [CrossRef] [PubMed]
  23. M. G. Kuzyk, “A bird’s-eye view of nonlinear-optical processes: Unification through scale invariance,” Nonlinear Opt., Quantum Opt. 40, 1–13 (2010).
  24. S. P. Goldman and G. W. F. Drake, “Relativistic sum rules and integral properties of the Dirac equation,” Phys. Rev. A 25, 2877–2881 (1982). [CrossRef]
  25. P. T. Leung and M. L. Rustgi, “Relativistic corrections to Bethe sum rule,” Phys. Rev. A 33, 2827–2829 (1986). [CrossRef] [PubMed]
  26. S. M. Cohen, “Aspects of relativistic sum rules,” Adv. Quantum Chem. 46, 241–265 (2004). [CrossRef]
  27. J. J. Sakurai, Modern Quantum Mechanics—Revised Edition (Addison Wesley Longman, 1994).
  28. M. G. Kuzyk, “Truncated sum rules and their use in calculating fundamental limits of nonlinear susceptibilities,” J. Nonlinear Opt. Phys. Mater. 15, 77–87 (2006). [CrossRef]
  29. C. W. Dirk and M. G. Kuzyk, “Missing-state analysis: A method for determining the origin of molecular nonlinear optical properties,” Phys. Rev. A 39, 1219–1226 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited