OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 1 — Jan. 1, 2011
  • pp: 100–108

Theory of lossless polarization attraction in telecommunication fibers

Victor V. Kozlov, Javier Nuño, and Stefan Wabnitz  »View Author Affiliations


JOSA B, Vol. 28, Issue 1, pp. 100-108 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000100


View Full Text Article

Enhanced HTML    Acrobat PDF (519 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, polarization attraction is meant to be the conservative nonlinear effect that transforms any arbitrary input state of polarization (SOP) of an intense optical signal beam fed to a nonlinear medium into approximately one and the same SOP at the output, provided that the medium is driven by a relatively stronger counterpropagating pump beam. Essentially, the combination of the nonlinear medium and the pump beam serves as a lossless polarizer for the signal beam. The degree of polarization of the outcoming signal beam can be close to 100% (90% in our present simulations). With an eye toward the development of such lossless polarizers for fiber optics applications, we theoretically study the polarization attraction effect in the optical fibers that are used in telecommunication links; i.e., randomly birefringent fibers. A generic model for the fiber-based lossless polarizers is derived, and a statistical scheme for the quantification of their performance is proposed.

© 2011 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(230.1150) Optical devices : All-optical devices
(230.4320) Optical devices : Nonlinear optical devices
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Optical Devices

History
Original Manuscript: August 27, 2010
Manuscript Accepted: October 18, 2010
Published: December 14, 2010

Citation
Victor V. Kozlov, Javier Nuño, and Stefan Wabnitz, "Theory of lossless polarization attraction in telecommunication fibers," J. Opt. Soc. Am. B 28, 100-108 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-1-100


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. E. Zakharov and A. V. Mikhailov, “Polarization domains in nonlinear optics,” Pis’ma Zh. Eksp. Teor. Fiz., 45, 279–282 (1987) [JETP Lett. 45, 349–352 (1987)].
  2. S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett. 81, 1409–1412 (1998). [CrossRef]
  3. S. Wabnitz, “Chiral polarization solitons in elliptically birefringent spun optical fibers,” Opt. Lett. 34, 908–910 (2009). [CrossRef] [PubMed]
  4. S. Wabnitz, “Cross polarization modulation domain wall solitons for WDM signals in birefringent optical fibers,” IEEE Photonics Technol. Lett. 21, 875–877 (2009). [CrossRef]
  5. A. V. Mikhailov and S. Wabnitz, “Polarization dynamics of counterpropagating beams in optical fibers,” Opt. Lett. 15, 1055–1057 (1990). [CrossRef] [PubMed]
  6. S. Wabnitz and B. Daino, “Polarization domains and instabilities in nonlinear optical fibers,” Phys. Lett. A 182, 289–293(1993). [CrossRef]
  7. A. Degasperis, S. V. Manakov, and P. M. Santini, “On the initial-boundary value problems for soliton equations,” JETP Lett. 74, 481–485 (2001). [CrossRef]
  8. V. V. Kozlov and S. Wabnitz, “Instability of optical solitons in the boundary value problem for a medium of finite extension,” Lett. Math. Phys. , in press (2010). [CrossRef]
  9. S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88–94(2005). [CrossRef]
  10. D. Sugny, A. Picozzi, S. Lagrange, and H. R. Jauslin, “Role of singular tori in the dynamics of spatiotemporal nonlinear wave systems,” Phys. Rev. Lett. 103, 034102 (2009). [CrossRef] [PubMed]
  11. E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35, 2025 (2010). [CrossRef] [PubMed]
  12. S. Lagrange, D. Sugny, A. Picozzi, and H. R. Jauslin, “Singular tori as attractors of four-wave-interaction systems,” Phys. Rev. E 81, 016202 (2010). [CrossRef]
  13. J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, “Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling,” Opt. Lett. 25, 257–259 (2000). [CrossRef]
  14. S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: theory and experiments,” J. Opt. Soc. Am. B 18, 432–443(2001). [CrossRef]
  15. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16, 6646–6651 (2008). [CrossRef] [PubMed]
  16. J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18, 15311–15317 (2010). [CrossRef] [PubMed]
  17. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17, 947–955 (2009). [CrossRef] [PubMed]
  18. A. Zadok, E. Zilka, A. Eyal, L. Thèvenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707(2008). [CrossRef] [PubMed]
  19. J. Fatome, S. Pitois, and G. Millot, “Experimental evidence of Brillouin-induced polarization wheeling in highly birefringent optical fibers,” Opt. Express 17, 12612–12618 (2009). [CrossRef] [PubMed]
  20. P. K. A. Wai and C. R. Menyuk, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 14, 148(1996). [CrossRef]
  21. V. V. Kozlov and S. Wabnitz, “Theoretical study of polarization attraction in high-birefringence and spun fibers,” Opt. Lett. , 35, 3949–3951 (2010). [CrossRef] [PubMed]
  22. C. R. Menyuk and B. S. Marks, “Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems,” J. Lightwave Technol. 24, 2806–2826 (2006). [CrossRef]
  23. C. Martijn de Sterke, K. R. Jackson, and B. D. Robert, “Nonlinear coupled-mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B 8, 403–412 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited