OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 1 — Jan. 1, 2011
  • pp: 171–178

Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity

Jan Helbing and Peter Hamm  »View Author Affiliations

JOSA B, Vol. 28, Issue 1, pp. 171-178 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (820 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe an optimized setup for two-dimensional (2D) IR spectroscopy, which can be implemented at low additional cost and with standard optics in any laboratory equipped for femtosecond mid-IR spectroscopy. An interferometer produces a pair of intense pump pulses, whose interferogram is simultaneously recorded and directly yields the relative phase needed for the calculation of absorptive 2D spectra. We analyze different sampling methods based on a realistic noise model and introduce fast population time modulation as an alternative to the use of choppers in the suppression of scatter. Signal levels are compared to those of a photon-echo setup.

© 2011 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 14, 2010
Manuscript Accepted: November 4, 2010
Published: December 22, 2010

Jan Helbing and Peter Hamm, "Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity," J. Opt. Soc. Am. B 28, 171-178 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies,” Annu. Rev. Phys. Chem. 49, 99–123 (1998). [CrossRef]
  2. S. Mukamel and R. M. Hochstrasser, “2D spectroscopy,” Chem. Phys. 266, 135–136 (2001) and all articles in that issue.
  3. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003). [CrossRef] [PubMed]
  4. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434, 199–202 (2005). [CrossRef] [PubMed]
  5. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005). [CrossRef] [PubMed]
  6. R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. U. S. A. 104, 14190–14196 (2007). [CrossRef] [PubMed]
  7. J. Bredenbeck, J. Helbing, C. Kolano, and P. Hamm, “Ultrafast 2D-IR spectroscopy of transient species,” Chem. Phys. Chem. 8, 1747–1756 (2007). [CrossRef] [PubMed]
  8. J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res. 40, 75–83 (2007). [CrossRef] [PubMed]
  9. Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008). [CrossRef] [PubMed]
  10. J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: an ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol. Opt. Phys. 57, 249–321 (2009). [CrossRef]
  11. S. Mukamel, Y. Tanimura, and P. Hamm, “Coherent multidimensional optical spectroscopy,” 42, 1207–1209 (2009) and all articles in that issue.
  12. P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998). [CrossRef]
  13. M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U. S. A. 98, 11265–11270 (2001). [CrossRef] [PubMed]
  14. M. Khalil, N. Demirdöven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258–5279 (2003). [CrossRef]
  15. M. Khalil, N. Demirdröven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett. 90, 047401 (2003). [CrossRef] [PubMed]
  16. E. H. G. Backus, S. Garrett-Roe, and P. Hamm, “Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2665–2667 (2008). [CrossRef] [PubMed]
  17. V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed fourier transform 2D-IR spectroscopy: an experimental and theoretical comparison,” J. Chem. Phys. 121, 5935–5942 (2004). [CrossRef] [PubMed]
  18. J. F. Cahoon, K. R. Sawyer, J. P. Schlegel, and C. B. Harris, “Determining transition-state geometries in liquids using 2D-IR,” Science 319, 1820–1823 (2008). [CrossRef] [PubMed]
  19. P. Bodis, M. R. Panman, B. H. Bakker, A. Mateo-Alonso, M. Prato, W. J. Buma, A. M. Brouwer, E. R. Kay, D. A. Leigh, and S. Woutersen, “Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines,” Acc. Chem. Res. 42, 1462–1469 (2009). [CrossRef] [PubMed]
  20. J. Bredenbeck, J. Helbing, and P. Hamm, “Transient 2D-IR spectroscopy exploring the polarization dependence,” J. Chem. Phys. 121, 5943–5957 (2004). [CrossRef] [PubMed]
  21. S. M. G. Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A 103, 10489–10505 (1999). [CrossRef]
  22. L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional fourier transform spectroscopy in the pump–probe geometry,” Opt. Lett. 32, 2966–2968 (2007). [CrossRef] [PubMed]
  23. S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett. 31, 838–840 (2006). [CrossRef] [PubMed]
  24. E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681–16689 (2007). [CrossRef] [PubMed]
  25. J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420–17428 (2008). [CrossRef] [PubMed]
  26. W. Kuehn, K. Reimann, M. Woerner, and T. Elsaesser, “Phase-resolved two-dimensional spectroscopy based on collinear n-wave mixing in the ultrafast time domain,” J. Chem. Phys. 130, 164503 (2009). [CrossRef] [PubMed]
  27. S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Multidimensional ultrafast spectroscopy special feature: automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U. S. A. 104, 14197–14202(2007). [CrossRef] [PubMed]
  28. M. J. Downs and K. W. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precis. Eng. 1, 85–88 (1979). [CrossRef]
  29. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474(1995). [CrossRef]
  30. A. W. Albrecht, J. D. Hybl, S. M. G. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999). [CrossRef]
  31. M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality : the pharmacological, biological, and chemical consequences of molecular asymmetry 21, E298–E306(2009). [CrossRef]
  32. R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, “Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments,” Opt. Express , 18, 27067–27078 (2010). [CrossRef]
  33. W. Xiong and M. T. Zanni, “Signal enhancement and background cancellation in collinear two-dimensional spectroscopies,” Opt. Lett. 33, 1371–1373 (2008). [CrossRef] [PubMed]
  34. J. Korppi-Tommola, J. Helbing, N. Humalamäki, M. Haukka, E. Andresen, and P. Hamm, “Sensitizer exchange dynamics in air and solvent filled semiconductor nanocavities,” in International Conference on Ultrafast Phenomena, OSA Technical Digest (CD) (Optical Society of America, 2010), paper ME15.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited