OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 10 — Oct. 1, 2011
  • pp: 2402–2407

Transmission enhancement in three-dimensional rolled-up plasmonic metamaterials containing optically active quantum wells

Andreas Rottler, Stephan Schwaiger, Aune Koitmäe, Detlef Heitmann, and Stefan Mendach  »View Author Affiliations


JOSA B, Vol. 28, Issue 10, pp. 2402-2407 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002402


View Full Text Article

Enhanced HTML    Acrobat PDF (594 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate three-dimensional rolled-up metamaterials containing optically active quantum wells and metal gratings supporting surface plasmon polariton (SPP) resonances. Finite-difference time-domain simulations show that, by matching the SPP resonance with the active wavelength regime of the quantum well, a strong transmission enhancement is observed when illuminating the sample with p-polarized radiation. This transmission enhancement is further increased by taking advantage of the Fabry–Perot resonances of the structure.

© 2011 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: May 4, 2011
Revised Manuscript: August 9, 2011
Manuscript Accepted: August 9, 2011
Published: September 9, 2011

Citation
Andreas Rottler, Stephan Schwaiger, Aune Koitmäe, Detlef Heitmann, and Stefan Mendach, "Transmission enhancement in three-dimensional rolled-up plasmonic metamaterials containing optically active quantum wells," J. Opt. Soc. Am. B 28, 2402-2407 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-10-2402


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  2. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photon. 1, 224–227(2007). [CrossRef]
  3. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010). [CrossRef] [PubMed]
  4. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007). [CrossRef] [PubMed]
  5. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008). [CrossRef] [PubMed]
  6. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon. 3, 388–394 (2009). [CrossRef]
  7. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79(2001). [CrossRef] [PubMed]
  8. N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350(2005). [CrossRef] [PubMed]
  9. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404(2005). [CrossRef] [PubMed]
  10. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800–1802 (2006). [CrossRef] [PubMed]
  11. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009). [CrossRef] [PubMed]
  12. G. Dolling, M. Wegener, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 551–553 (2007). [CrossRef] [PubMed]
  13. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2007). [CrossRef] [PubMed]
  14. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008). [CrossRef] [PubMed]
  15. V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Physica E 6, 828–831 (2000). [CrossRef]
  16. O. Schumacher, S. Mendach, H. Welsch, A. Schramm, C. Heyn, and W. Hansen, “Lithographically defined metal-semiconductor-hybrid nanoscrolls,” Appl. Phys. Lett. 86, 143109 (2005). [CrossRef]
  17. S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102, 163903 (2009). [CrossRef] [PubMed]
  18. T. Zander, Ch. Deneke, A. Malachias, Ch. Mickel, T. H. Metzger, and O. G. Schmidt, “Planar hybrid superlattices by compression of rolled-up nanomembranes,” Appl. Phys. Lett. 94, 053102 (2009). [CrossRef]
  19. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010). [CrossRef] [PubMed]
  20. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17, 8548–8551 (2009). [CrossRef] [PubMed]
  21. N. Meinzer, M. Ruther, S. Linden, C. M. Soukoulis, G. Khitrova, J. Hendrickson, J. D. Olitzky, H. M. Gibbs, and M. Wegener, “Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain,” Opt. Express 18, 24140–24151 (2010). [CrossRef] [PubMed]
  22. S. Schwaiger, M. Klingbeil, J. Kerbst, A. Rottler, R. Costa, A. Koitmae, M. Bröll, C. Heyn, Y. Stark, D. Heitmann, and S. Mendach, “Gain in three-dimensional metamaterials utilizing semiconductor quantum structures,” arXiv:1104.2208v1 (2011).
  23. Lumerical Solutions Inc., “Lumerical FDTD solutions homepage,” http://www.lumerical.com/fdtd.php.
  24. E. Palik, Handbook of Optical Constants and Solids(Academic, 1985).
  25. K.-H. Goetz, D. Bimberg, H. Jürgensen, J. Selders, A. V. Solomonov, G. F. Glinskii, and M. Razeghi, “Optical and crystallographic properties and impurity incorporation of GaxIn1−xAs(0.44×0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition,” J. Appl. Phys. 54, 4543–4552 (1983). [CrossRef]
  26. B. Monemar, K. K. Shih, and G. D. Pettit, “Some optical properties of the AlxGa1−xAs alloys system,” J. Appl. Phys. 47, 2604–2613 (1976). [CrossRef]
  27. A. A. Govyadinov, V. A. Podolskiy, and M. A. Noginov, “Active metamaterials: sign of refractive index and gain-assisted dispersion management,” Appl. Phys. Lett. 91, 191103 (2007). [CrossRef]
  28. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006). [CrossRef]
  29. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Semiclassical theory of the hyperlens,” J. Opt. Soc. Am. A 24, A52–A59(2007). [CrossRef]
  30. S. Riikonen, I. Romero, and F. J. Garcia de Abajo, “Plasmon tunability in metallodielectric metamaterials,” Phys. Rev. B 71, 235104 (2005). [CrossRef]
  31. I. Romero and F. J. Garcia de Abajo, “Anisotropy and particle-size effects in nanostructured plasmonic metamaterials,” Opt. Express 17, 22012–22022 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited