OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 10 — Oct. 1, 2011
  • pp: 2524–2528

Transformation-optics-based nanopattern recognition

Kedi Wu and Guo Ping Wang  »View Author Affiliations


JOSA B, Vol. 28, Issue 10, pp. 2524-2528 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002524


View Full Text Article

Enhanced HTML    Acrobat PDF (424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a complementary-medium-based matched filter synthesized through transformation optics (TO) for the recognition of nanopatterns at visible frequencies. The recognition is independent of the spatial position of the nanopatterns and is unrelated to the existence of other noise structures. Analytical results are verified by numerical simulations. Our results can linearly scale down to much smaller nanopatterns and may inspire new interesting applications of TO in biology, medicine, and chemistry for nondestructive and label-free discrimination imaging of biological cells, protein macromolecules, and organic tissues with linear optical systems instead of nonlinear optics.

© 2011 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

History
Original Manuscript: July 20, 2011
Revised Manuscript: September 1, 2011
Manuscript Accepted: September 1, 2011
Published: September 29, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Kedi Wu and Guo Ping Wang, "Transformation-optics-based nanopattern recognition," J. Opt. Soc. Am. B 28, 2524-2528 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-10-2524


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Vander Lugt, F. B. Rotz, and A. Klooster, Optical and Electro-Optical Information Processing (MIT Press, 1965), pp. 125–141.
  2. British Computer Society, Character Recognition (British Computer Society, 1971).
  3. M. S. Alam and M. A. Karim, “Fringe-adjusted joint transform correlation,” Appl. Opt. 32, 4344–4350 (1993). [CrossRef] [PubMed]
  4. R. S. Caprari, “Method of target detection in images by moment analysis of correlation peaks,” Appl. Opt. 38, 1317–1324 (1999). [CrossRef]
  5. B. Huang, H. Babcock, and X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143, 1047–1058(2010). [CrossRef] [PubMed]
  6. C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photon. 5, 103–109 (2011). [CrossRef]
  7. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three dimensional optical metamaterial exhibiting negative refractive index,” Nature 455, 376–379 (2008). [CrossRef] [PubMed]
  8. R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891–2928 (1999). [CrossRef]
  9. Z. Jacob, L. A. Alekseyev, and E. E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006). [CrossRef] [PubMed]
  10. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33, 43–45 (2008). [CrossRef]
  11. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007). [CrossRef] [PubMed]
  12. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010). [CrossRef]
  13. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008). [CrossRef] [PubMed]
  14. Y. Ozeki, F. Dake, S. Kajiyama, K. i. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17, 3651–3658 (2009). [CrossRef] [PubMed]
  15. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11, 033026 (2009). [CrossRef]
  16. A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43, 773–793 (1996). [CrossRef]
  17. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef] [PubMed]
  18. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]
  19. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010). [CrossRef] [PubMed]
  20. A. J. Danner, T. Tyc, and U. Leonhardt, “Controlling birefringence in dielectrics,” Nat. Photon. 5, 357–359 (2011). [CrossRef]
  21. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901(2011). [CrossRef] [PubMed]
  22. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007). [CrossRef] [PubMed]
  23. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photon. 1, 224–227(2007). [CrossRef]
  24. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008). [CrossRef] [PubMed]
  25. A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623(2005). [CrossRef]
  26. Y. Lai, H. Y. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009). [CrossRef] [PubMed]
  27. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009). [CrossRef] [PubMed]
  28. Y. Luo, H. Chen, J. Zhang, L. Ran, and J. A. Kong, “Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations,” Phys. Rev. B 77, 125127 (2008). [CrossRef]
  29. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2005).
  30. M. Born and E. Wolf, Principles of Optics (Pergamon, 1970).
  31. K. Wu and G. P. Wang, “General insight into the complementary medium-based camouflage devices from Fourier optics,” Opt. Lett. 35, 2242–2244 (2010). [CrossRef] [PubMed]
  32. K. Wu and G. P. Wang, “Hiding objects and creating illusions above a carpet filter using a Fourier optics approach,” Opt. Express 18, 19894–19901 (2010). [CrossRef] [PubMed]
  33. K. Wu, Q. Cheng, and G. P. Wang, “Fourier optics theory for invisibility cloaks,” J. Opt. Soc. Am. B 28, 1467–1474 (2011). [CrossRef]
  34. G. A. Zheng, X. Heng, and C. H. Yang, “A phase conjugate mirror inspired approach for building cloaking structures with left-handed materials,” New J. Phys. 11, 033010 (2009). [CrossRef]
  35. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited