OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: 2865–2870

Efficient fluorescence collection and ion imaging with the “tack” ion trap

Gang Shu, Chen-Kuan Chou, Nathan Kurz, Matthew R. Dietrich, and Boris B. Blinov  »View Author Affiliations


JOSA B, Vol. 28, Issue 12, pp. 2865-2870 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002865


View Full Text Article

Enhanced HTML    Acrobat PDF (657 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Trapped, laser-cooled atoms and ions produce intense fluorescence of the order 10 7 10 8 photons per second. Detection of this fluorescence enables efficient measurement of the quantum state of qubits based on trapped atoms. It is desirable to collect a large fraction of the photons to make the detection faster and more reliable. Additionally, efficient fluorescence collection can improve the speed and fidelity of remote ion entanglement and quantum gates. Refractive and reflective optics, and optical cavities have all been used to collect the trapped ion fluorescence with up to about 10% efficiency. Here we show a novel ion trap design that incorporates a metallic spherical mirror as the integral part of the trap itself, being its RF electrode. The mirror geometry enables up to 35% solid angle collection of trapped ion fluorescence. The movable central pin electrode of this trap allows precise placement of the ion at the focus of the reflector. We characterize the performance of the mirror, and measure 25% collection efficiency, likely limited by the imperfections of the mirror surface. We also study the properties of the images of single ions formed by the spherical mirror and apply aberration correction with an aspherical element placed outside the vacuum system. Owing to the simplicity of its design, this trap structure can be adapted for microfabrication and integration into more complex trap architectures.

© 2011 Optical Society of America

OCIS Codes
(270.5585) Quantum optics : Quantum information and processing
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Quantum Optics

History
Original Manuscript: August 26, 2011
Manuscript Accepted: September 22, 2011
Published: November 11, 2011

Citation
Gang Shu, Chen-Kuan Chou, Nathan Kurz, Matthew R. Dietrich, and Boris B. Blinov, "Efficient fluorescence collection and ion imaging with the “tack” ion trap," J. Opt. Soc. Am. B 28, 2865-2870 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-12-2865


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. P. DiVincenzo, “Dogma and heresy in quantum computing,” Quantum Inf. Comput. 1, 1-6 (2001).
  2. D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709-711(2002). [CrossRef] [PubMed]
  3. C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238-246 (2002). [CrossRef] [PubMed]
  4. B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quant. Info. Proc. 3, 45-59 (2004). [CrossRef]
  5. C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a paul trap,” Phys. Rev. Lett. 83, 4713-4716 (1999). [CrossRef]
  6. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412-415 (2003). [CrossRef] [PubMed]
  7. S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314(2007). [CrossRef]
  8. A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Staccey, A. M. Steane, and D. M. Lucas, “High-fidelity readout of trapped-ion qubit,” Phys. Rev. Lett. 100, 200502 (2008). [CrossRef] [PubMed]
  9. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221-3224(1997). [CrossRef]
  10. B. B. Blinov, D. L. Moehring, L. M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153-157 (2004). [CrossRef] [PubMed]
  11. L. M. Duan, B. B. Blinov, D. L. Moehring, and C. Monroe, “Scalable trapped ion quantum computation with a probabilistic ion-photon mapping,” Quantum Inf. Comput. 4, 165-173 (2004).
  12. L. M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006). [CrossRef]
  13. D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390-393 (1999). [CrossRef]
  14. P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009). [CrossRef] [PubMed]
  15. D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L. M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68-71(2007). [CrossRef] [PubMed]
  16. K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys. 3, 556-560 (2007). [CrossRef]
  17. J. Eschner, C. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from single atoms and their mirror images,” Nature 413, 495-498 (2001). [CrossRef] [PubMed]
  18. W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74-77 (2009). [CrossRef] [PubMed]
  19. N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411, 1024-1027 (2001). [CrossRef] [PubMed]
  20. A. Jechow, E. W. Streed, B. G. Norton, M. J. Petrasiunas, and D. Kielpinski, “Wavelength-scale imaging of trapped ions using a phase Fresnel lens,” Opt. Lett. 36, 1371-1373 (2011). [CrossRef] [PubMed]
  21. M. Sondermann, R. Maiwald, H. Konermann, N. Lindlein, U. Peschel, and G. Leuchs, “Design of a mode converter for efficient light-atom coupling in free space,” Appl. Phys. B 89, 489-492 (2007). [CrossRef]
  22. R. Maiwald, D. Leibfried, J. Britton, J. C. Bergquist, G. Leuchs, and D. J. Wineland, “Stylus ion trap for enhanced access and sensing,” Nat. Phys. 5, 551-554 (2009). [CrossRef]
  23. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075-1078 (2004). [CrossRef] [PubMed]
  24. H. G. Barros, A. Stute, T. E. Northup, C. Russo, P. O. Schmidt, and R. Blatt, “Deterministic single-photon source from a single ion,” New J. Phys. 11, 103004 (2009). [CrossRef]
  25. G. Shu, M. R. Dietrich, N. Kurz, and B. B. Blinov, “Trapped ion imaging with a high numerical aperture spherical mirror,” J. Phys. B 42, 154005 (2009). [CrossRef]
  26. G. Shu, N. Kurz, M. R. Dietrich, and B. B. Blinov, “Efficient fluorescence collection from trapped ions with an integrated spherical mirror,” Phys. Rev. A 81, 042321(2010). [CrossRef]
  27. J. Chiaverini, R. B. B. J. Britton, J. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Surface-electrode architecture for ion-trap quantum information processing,” Quantum Inf. Comput. 5, 419-439 (2005).
  28. D. L. Moehring, C. Highstrete, D. Stick, K. M. Fortier, R. Haltli, C. Tigges, and M. G. Blain are preparing a manuscript to be called “Design, fabrication, and experimental demonstration of junction surface ion traps.”
  29. M. R. Dietrich, A. Avril, R. Bowler, N. Kurz, J. S. Salacka, G. Shu, and B. B. Blinov, “Barium ions for quantum computation,” AIP Conf. Proc. 1114, 25-30 (2008). [CrossRef]
  30. A. V. Steele, L. R. Churchill, P. F. Griffin, and M. S. Chapman, “Photoionization and photoelectric loading of barium ion traps,” Phys. Rev. A 75, 053404 (2007). [CrossRef]
  31. K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L. M. Duan, and C. Monroe, “Quantum simulation of frustrated ising spins with trapped ions,” Nature 465, 590-593 (2010). [CrossRef] [PubMed]
  32. K. Hinode and Y. Homma, “Whiskers grown on aluminum thin films during heat treatments,” J. Vac. Sci. Technol. A 14, 2570-2576 (1996). [CrossRef]
  33. D. W. de Lima Monteiro, O. Akhzar-Mehr, P. M. Sarro, and G. Vdovin, “Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si,” Opt. Express 11, 2244-2252 (2003). [CrossRef] [PubMed]
  34. J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher are preparing a manuscript to be called “Demonstration of integrated microscale optics in surface-electrode ion traps.”
  35. G. V. Vdovin, O. Akhzar-Mehr, P. M. Sarro, D. W. DeLimaMonteiro, and M. Lokteva, “Arrays of spherical micromirrors and molded microlenses fabricated with bulk Si micromachining,” Proc. SPIE 4945, 107-111 (2003). [CrossRef]
  36. S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767-769 (2003). [CrossRef]
  37. X. Fan, P. Palinginis, S. Lacey, H. Wang, and M. C. Lonergan, “Coupling semiconductor nanocrystals to a fused-silica microsphere: a quantum-dot microcavity with extremely high qfactor,” Opt. Lett. 25, 1600-1602 (2000). [CrossRef]
  38. M. A. Davies, C. J. Evans, S. R. Patterson, R. Vohra, and B. C. Bergner, “Application of precision diamond machining to the manufacture of micro-photonics components,” Proc. SPIE 5183, 94 (2003). [CrossRef]
  39. Y. Hanein, C. G. J. Schabmueller, G. Holman, P. Lucke, D. D. Denton, and K. F. Bohringer, “High-aspect ratio submicrometer needles for intracellular applications,” J. Micromech. Microeng. 13, S91-S95 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited