OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: 2966–2973

Enhancing quantum discord in cavity QED by an added nonlinear Kerr-like medium

Qi-Liang He and Jing-Bo Xu  »View Author Affiliations

JOSA B, Vol. 28, Issue 12, pp. 2966-2973 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (553 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the quantum discord dynamics of two noninteracting two-level atoms, each trapped in a single-mode optical cavity which is filled with a nonlinear Kerr-like medium. It is found that quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution. Furthermore, we explore the influence of the nonlinear Kerr-like medium on the dynamics of quantum discord, quantum mutual information, and classical correlation of two atoms. It is shown that the amount of quantum discord, quantum mutual information, and classical correlation of two atoms can be improved by adjusting the value of the Kerr medium. Finally, we also study the effect of phase dissipation on this system by making use of the Monte Carlo wavefunction method.

© 2011 Optical Society of America

OCIS Codes
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: April 11, 2011
Revised Manuscript: July 18, 2011
Manuscript Accepted: September 24, 2011
Published: November 23, 2011

Qi-Liang He and Jing-Bo Xu, "Enhancing quantum discord in cavity QED by an added nonlinear Kerr-like medium," J. Opt. Soc. Am. B 28, 2966-2973 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935). [CrossRef]
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, Cambridge, 2000).
  3. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wotters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef] [PubMed]
  4. S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869–872(1998). [CrossRef]
  5. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998). [CrossRef]
  6. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001). [CrossRef]
  7. D. Braun, “Creation of entanglement by interaction with a common heat bath,” Phys. Rev. Lett. 89, 277901 (2002). [CrossRef]
  8. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268–271 (2007). [CrossRef] [PubMed]
  9. J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H. C. Nagerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90, 133602 (2003). [CrossRef] [PubMed]
  10. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999). [CrossRef]
  11. Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007). [CrossRef]
  12. E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997). [CrossRef]
  13. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000). [CrossRef] [PubMed]
  14. C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091(1999). [CrossRef]
  15. M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005). [CrossRef]
  16. V. Vedral, “The elusive source of quantum speedup,” Found. Phys. 40, 1141–1154 (2010). [CrossRef]
  17. J. Cui and H. Fan, “Correlations in the Grover search,” J. Phys. A: Math. Theor. 43, 045305 (2010). [CrossRef]
  18. Y. Yeo, “Local noise can enhance two-qubit teleportation,” Phys. Rev. A 78, 022334 (2008). [CrossRef]
  19. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999). [CrossRef]
  20. D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000). [CrossRef] [PubMed]
  21. A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008). [CrossRef] [PubMed]
  22. B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008). [CrossRef] [PubMed]
  23. H. Ollivier and W. H. Zurek, “Quantum Discord: A Measure of the Quantumness of Correlations,” Phys. Rev. Lett. 88, 017901(2001). [CrossRef]
  24. T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004). [CrossRef] [PubMed]
  25. T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009). [CrossRef]
  26. B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101(2010). [CrossRef]
  27. J. S. Jin, C. S. Yu, P. Pei, and H. S. Song, “Quantum discord induced by white noises,” J. Opt. Soc. Am. B 27, 1799–1803(2010). [CrossRef]
  28. J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009). [CrossRef]
  29. L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010). [CrossRef] [PubMed]
  30. J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010). [CrossRef]
  31. A. Joshi and R. R. Puri, “Dynamical evolution of the two-photon Jaynes-Cummings model in a Kerr-like medium,” Phys. Rev. A 45, 5056–5060 (1992). [CrossRef] [PubMed]
  32. B. Bellomo, R. Lo Franco, and G. Compagno, “Entanglement dynamics of two independent qubits in environments with and without memory,” Phys. Rev. A 77, 032342 (2008). [CrossRef]
  33. M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010). [CrossRef]
  34. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998). [CrossRef]
  35. T. Yu and J. H. Eberly, “Evolution from entanglement to decoherence of bipartite mixed “X” states,” Quantum Inf. Comput. 7, 459–468 (2007).
  36. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 1994).
  37. J. Dalibard, Y. Castin, and K. Mølmer, “Wave-function approach to dissipative processes in quantum optics,” Phys. Rev. Lett. 68, 580–583 (1992). [CrossRef] [PubMed]
  38. J. Jing and T. Yu, “Non-Markovian relaxation of a three-level system: quantum trajectory approach,” Phys. Rev. Lett. 105, 240403 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited