OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: A1–A10

Nonlinear fiber optics: its history and recent progress [Invited]

Govind P. Agrawal  »View Author Affiliations

JOSA B, Vol. 28, Issue 12, pp. A1-A10 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (811 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This review begins with an historical introduction to the field of nonlinear fiber optics and then focuses on the propagation of short optical pulses inside optical fibers. The underlying nonlinear Schrödinger equation is used to discuss the nonlinear phenomenon of self-phase modulation that leads to the formation of solitons in the presence of anomalous dispersion. Recent work on supercontinuum generation is reviewed with emphasis on the important nonlinear processes, such as the fission of higher-order solitons and intrapulse Raman scattering. Applications of fiber-based supercontinuum sources are also discussed in diverse areas ranging from biomedical imaging to frequency metrology. The last part describes applications resulting from nonlinear phenomena, such as cross-phase modulation, stimulated Raman scattering, and four-wave mixing.

© 2011 Optical Society of America

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(190.4370) Nonlinear optics : Nonlinear optics, fibers

Original Manuscript: August 25, 2011
Manuscript Accepted: September 21, 2011
Published: November 11, 2011

Virtual Issues
(2011) Advances in Optics and Photonics
November 11, 2011 Spotlight on Optics

Govind P. Agrawal, "Nonlinear fiber optics: its history and recent progress [Invited]," J. Opt. Soc. Am. B 28, A1-A10 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960). [CrossRef]
  2. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961). [CrossRef]
  3. E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near IR,” Proc. IRE 50, 2367 (1962). [CrossRef]
  4. P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964). [CrossRef]
  5. R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964). [CrossRef]
  6. R. L. Carman, R. Y. Chiao, and P. L. Kelly, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283(1966). [CrossRef]
  7. N. Bloembergen, Nonlinear Optics (Benjamin, 1965).
  8. F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17, 423–425 (1970). [CrossRef]
  9. R. H. Stolen, E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972). [CrossRef]
  10. E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972). [CrossRef]
  11. R. H. Stolen and A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22, 294–296 (1973). [CrossRef]
  12. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974). [CrossRef]
  13. R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975). [CrossRef]
  14. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978). [CrossRef]
  15. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973). [CrossRef]
  16. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980). [CrossRef]
  17. L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13–15 (1984). [CrossRef] [PubMed]
  18. R. H. Stolen, “The early years of fiber nonlinear optics,” J. Lightwave Technol. 26, 1021–1031 (2008). [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  20. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  21. E. P. Ippen, in Laser Applications to Optics and Spectroscopy, S.F.Jacobs, M.SargentIII, J.F.Scott, and M.O.Scully, eds. (Addison-Wesley, 1975), Vol.  2, Chap. 6.
  22. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989). [CrossRef]
  23. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086–3088 (2006). [CrossRef] [PubMed]
  24. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11, 464–488(1986). [CrossRef] [PubMed]
  25. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987). [CrossRef]
  26. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987). [CrossRef]
  27. K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13, 392–394(1988). [CrossRef] [PubMed]
  28. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995). [CrossRef] [PubMed]
  29. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986). [CrossRef] [PubMed]
  30. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986). [CrossRef] [PubMed]
  31. J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003). [CrossRef]
  32. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air–silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001). [CrossRef]
  33. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25–27 (2000). [CrossRef]
  34. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006). [CrossRef]
  35. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009). [CrossRef]
  36. J.M.Dudley and J.R.Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010). [CrossRef]
  37. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3787(2011). [CrossRef] [PubMed]
  38. J. C. Travers, “Continuous wave supercontinuum generation,” in Supercontinuum Generation in Optical Fibers (Cambridge University, 2010), Chap. 8. [CrossRef]
  39. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Méelin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped core photonic crystal fibers,” Opt. Lett. 34, 3631–3634 (2009). [CrossRef] [PubMed]
  40. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).
  41. K. Mori, K. Sato, H. Takara, and T. Ohara, “Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands,” Electron. Lett. 39, 544–546(2003). [CrossRef]
  42. V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, “A compact versatile femtosecond spectrometer,” Rev. Sci. Instrum. 73, 4145–4149 (2002). [CrossRef]
  43. K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, “Compact, broad-bandwidth fiber laser for sub-2-μm axial resolution optical coherence tomography in the 1300 nm wavelength region,” Opt. Lett. 28, 707–709 (2003). [CrossRef] [PubMed]
  44. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Ferman, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29, 2467–2469 (2004). [CrossRef] [PubMed]
  45. G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010). [CrossRef]
  46. M.N.Islam, ed., Raman Amplifiers for Telecommunications (Springer, 2003), Parts 1 and 2.
  47. C.Headley and G.P.Agrawal, eds. Raman Amplification in Fiber Optical Communication Systems (Academic, 2005).
  48. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2007). [CrossRef]
  49. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30, 1234–1236 (2005). [CrossRef] [PubMed]
  50. J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005). [CrossRef] [PubMed]
  51. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009). [CrossRef] [PubMed]
  52. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited