Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Material slow light and structural slow light: similarities and differences for nonlinear optics [Invited]

Not Accessible

Your library or personal account may give you access

Abstract

There are two standard methods for controlling the group velocity of light. One makes use of the dispersive properties associated with the resonance structure of a material medium. The other makes use of structural resonances, such as those that occur in photonic crystals. Both procedures have proved useful in a variety of situations. In this work we contrast these two approaches, especially in terms of issues such as the kinematics of energy flow though the system and the resulting implications for the behavior of nonlinear optical processes in these situations. Stated differently, this paper addresses the question of when nonlinear optical processes are enhanced through use of slow-light interactions and when they are not.

©2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Material slow light and structural slow light: similarities and differences for nonlinear optics [Invited]: comment

Euvgenii Aleksandrov and Valerii Zapasskii
J. Opt. Soc. Am. B 29(9) 2643-2643 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.