OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: A67–A82

Optical frequency conversion in integrated devices [Invited]

Lucia Caspani, David Duchesne, Ksenia Dolgaleva, Sean J. Wagner, Marcello Ferrera, Luca Razzari, Alessia Pasquazi, Marco Peccianti, David J. Moss, J. Stewart Aitchison, and Roberto Morandotti  »View Author Affiliations

JOSA B, Vol. 28, Issue 12, pp. A67-A82 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1563 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We review our recent progress on frequency conversion in integrated devices, focusing primarily on experiments based on strip-loaded and quantum-well intermixed AlGaAs waveguides, and on CMOS-compatible high-index doped silica-glass waveguides. The former includes both second- and third-order interactions, demonstrating wavelength conversion by tunable difference-frequency generation over 100 nm bandwidth, as well as broadband self-phase modulation and tunable four-wave mixing. The latter includes four-wave mixing using low-power continuous-wave light in microring resonators as well as hyperparametric oscillation in a high quality factor resonator, toward the realization of an integrated multiple wavelength source with important applications for telecommunications, spectroscopy, and metrology.

© 2011 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(230.5750) Optical devices : Resonators
(190.4223) Nonlinear optics : Nonlinear wave mixing
(230.7405) Optical devices : Wavelength conversion devices

Original Manuscript: October 27, 2011
Manuscript Accepted: November 3, 2011
Published: December 2, 2011

Lucia Caspani, David Duchesne, Ksenia Dolgaleva, Sean J. Wagner, Marcello Ferrera, Luca Razzari, Alessia Pasquazi, Marco Peccianti, David J. Moss, J. Stewart Aitchison, and Roberto Morandotti, "Optical frequency conversion in integrated devices [Invited]," J. Opt. Soc. Am. B 28, A67-A82 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961). [CrossRef]
  2. J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  3. N. Bloembergen and P. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962). [CrossRef]
  4. P. K. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49, 361–420 (1977). [CrossRef]
  5. G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57–R78 (1985). [CrossRef]
  6. W. Sohler, B. Hampel, R. Regener, R. Ricken, H. Suche, and R. Volk, “Integrated optical parametric devices,” J. Lightw. Technol. 4, 772–777 (1986). [CrossRef]
  7. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J Lightw. Technol. 6, 953–970 (1988). [CrossRef]
  8. D. B. Anderson and T. J. Boyd, “Wideband CO2 Laser second harmonic generation phase matched in GaAs thin-film waveguides,” Appl. Phys. Lett. 19, 266–268 (1971). [CrossRef]
  9. A simple search on the Scopus database for “frequency conversion” or “wavelength conversion” returns more than 26,000 publications in the last decade (2001-2010).
  10. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40  Gb/s and beyond,” J. Lightw. Technol. 21, 2779–2790 (2003). [CrossRef]
  11. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightw. Technol. 14, 955–966 (1996). [CrossRef]
  12. B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE Journal on Selected Areas in Commun. 16, 1061–1073 (1998). [CrossRef]
  13. S. Venugopal Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A-Pure Appl. Opt. 6, 569–584 (2004).
  14. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  15. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  16. G. I. Stegeman, Nonlinear Guided Wave Optics (Wiley-Blackwell, 1998).
  17. F. Shimizu, “Frequency broadening in liquids by a short light pulse,” Phys. Rev. Lett. 19, 1097–1100 (1967). [CrossRef]
  18. F. DeMartini, C. Townes, T. Gustafson, and P. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164, 312–323 (1967). [CrossRef]
  19. G. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).
  20. S. Radic, D. J. Moss, and B. J. Eggleton, “Nonlinear optics in communications: From crippling impairment to ultrafast tools,” in Optical Fiber Telecommunications V A: Components and Subsystems, I. P. Kaminow, T. Li, and A. E. Willner, eds., 5th ed. (Academic, 2008), pp. 759–828.
  21. A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photon. 1, 153–155 (2007). [CrossRef]
  22. T. L. Koch and U. Koren, “Semiconductor photonic integrated circuits,” IEEE J. Quantum Electron. 27, 641–653 (1991). [CrossRef]
  23. B. E. Little and S. T. Chu, “Toward very large-scale integrated photonics,” Optics and Photonics News 11, 24–29 (2000). [CrossRef]
  24. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol. 24, 4600–4615 (2006). [CrossRef]
  25. L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97, 1161–1165 (2009). [CrossRef]
  26. G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” J. Nonlinear Opt. Phys. Mat. 3, 347–371 (1994). [CrossRef]
  27. V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007). [CrossRef]
  28. H. W. M. Salemink, F. Horst, R. Germann, B. J. Offrein, and G. L. Bona, “Silicon-oxynitride (SiON) for photonic integrated circuits,” Proc. MRS 574, 255–260 (1999).
  29. J. H. Lee, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “All-fiber 80  Gbit/s wavelength converter using 1 m-long Bismuth Oxide-based nonlinear optical fiber with a nonlinearity gamma of 1100  W−1 km−1,” Opt. Express 13, 3144–3149 (2005). [CrossRef]
  30. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16, 1300–1320 (2008). [CrossRef]
  31. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. J. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14, 5524–5534 (2006). [CrossRef]
  32. T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004). [CrossRef]
  33. H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23, 064007 (2008). [CrossRef]
  34. B. Little, “A VLSI Photonics Platform,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper ThD1.
  35. A. Villeneuve, J. S. Aitchison, B. Vögele, R. Tapella, J. U. Kang, C. Trevino, and G. I. Stegeman, “Waveguide design for minimum nonlinear effective area and switching energy in AlGaAs at half the bandgap,” Electron. Lett. 31, 549–551 (1995). [CrossRef]
  36. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348(1997). [CrossRef]
  37. D. Duchesne, R. Morandotti, G. A. Siviloglou, R. El-Ganainy, G. I. Stegeman, D. N. Christodoulides, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, and M. Sorel, “Nonlinear photonics in AlGaAs photonics nanowires: Self phase and cross phase modulation,” in 2007 International Symposium on Signals, Systems and Electronics (IEEE, 2007), pp. 475–478.
  38. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14, 9377–9384 (2006). [CrossRef]
  39. M. Choy and R. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976). [CrossRef]
  40. A. S. Helmy, P. Abolghasem, J. Stewart Aitchison, B. J. Bijlani, J. Han, B. M. Holmes, D. C. Hutchings, U. Younis, and S. J. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011). [CrossRef]
  41. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007). [CrossRef]
  42. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, 1999).
  43. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324–10329 (2007). [CrossRef]
  44. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003). [CrossRef]
  45. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004). [CrossRef]
  46. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16, 4881–4887 (2008). [CrossRef]
  47. K. Dolgaleva, W. C. Ng, L. Qian, and J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express 19, 1496–1498 (2011). [CrossRef]
  48. L.-W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011). [CrossRef]
  49. D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17, 1865–1870 (2009). [CrossRef]
  50. M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, and D. J. Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q=1.2 million,” Opt. Express 17, 14098–14103(2009). [CrossRef]
  51. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006). [CrossRef]
  52. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “All-optical regeneration on a silicon chip,” Opt. Express 15, 7802–7809 (2007). [CrossRef]
  53. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004). [CrossRef]
  54. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Van, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” J. Sel. Topics Quantum Electron. 12, 148–155 (2006). [CrossRef]
  55. A. Pasquazi, R. Ahmad, M. Rochette, M. Lamont, B. E. Little, S. T. Chu, R. Morandotti, and D. J. Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18, 3858–3863 (2010). [CrossRef]
  56. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1, 29 (2010). [CrossRef]
  57. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “All-optical 1st and 2nd order integration on a chip,” Opt. Express 19, 23153–23161 (2011). [CrossRef]
  58. M. Peccianti, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Subpicosecond optical pulse compression via an integrated nonlinear chirper,” Opt. Express 18, 7625–7633 (2010). [CrossRef]
  59. A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photon. 5, 618–623 (2011). [CrossRef]
  60. D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010). [CrossRef]
  61. E. Yablonovitch and T. J. Gmitter, “Photonic band structure: the face-centered-cubic case,” J. Opt. Soc. Am. A 7, 1792–1800 (1990). [CrossRef]
  62. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009). [CrossRef]
  63. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819(2003). [CrossRef]
  64. M. Volatier, D. Duchesne, R. Morandotti, R. Arès, and V. Aimez, “Extremely high aspect ratio GaAs and GaAs/AlGaAs nanowaveguides fabricated using chlorine ICP etching with N2-promoted passivation,” Nanotechnol. 21, 134014 (2010). [CrossRef]
  65. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef]
  66. D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. Little, S. T. Chu, and D. J. Moss, “Nonlinear optics in doped silica glass integrated waveguide structures,” in Frontiers in Guided Wave Optics and Optoelectronics, Pal Bishnu, ed. (2010), pp. 269–294.
  67. J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express 15, 12755–12762 (2007). [CrossRef]
  68. P. P. Markowicz, V. K. S. Hsiao, H. Tiryaki, A. N. Cartwright, P. N. Prasad, K. Dolgaleva, N. N. Lepeshkin, and R. W. Boyd, “Enhancement of third-harmonic generation in a polymer-dispersed liquid-crystal grating,” Appl. Phys. Lett. 87, 051102 (2005). [CrossRef]
  69. S. J. Wagner, B. M. Holmes, U. Younis, A. S. Helmy, J. S. Aitchison, and D. C. Hutchings, “Continuous wave second-harmonic generation using domain-disordered quasi-phase matching waveguides,” Appl. Phys. Lett. 94, 151107 (2009). [CrossRef]
  70. A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjdani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996). [CrossRef]
  71. L. Scaccabarozzi, M. M. Fejer, Y. Huo, S. Fan, X. Yu, and J. S. Harris, “Enhanced second-harmonic generation in AlGaAs/AlxOy tightly confining waveguides and resonant cavities,” Opt. Letters 31, 3626–3628 (2006). [CrossRef]
  72. S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004). [CrossRef]
  73. D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 19, 12408–12417 (2011). [CrossRef]
  74. A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguides,” Opt. Lett. 32, 2399–2401 (2007). [CrossRef]
  75. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001). [CrossRef]
  76. E. U. Rafailov, P. Loza-Alvarez, C. T. A. Brown, W. Sibbett, R. M. De La Rue, P. Millar, D. A. Yanson, J. S. Roberts, and P. A. Houston, “Second-harmonic generation from a first-order quasi-phase-matched GaAs/AlGaAs waveguide crystal,” Opt. Letters 26, 1984–1986 (2001). [CrossRef]
  77. J. H. Marsh, “Quantum well intermixing,” Semicond. Sci. Technol. 8, 1136–1155 (1993). [CrossRef]
  78. K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33, 1784–1793 (1997). [CrossRef]
  79. S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, J. S. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron. 47, 834–840 (2011). [CrossRef]
  80. D. C. Hutchings, “Theory of ultrafast nonlinear refraction in semiconductor superlattices,” J. Sel. Top. Quantum Electron. 10, 1124–1132 (2004). [CrossRef]
  81. J. S. Aitchison, M. W. Street, N. D. Whitbread, D. C. Hutchings, J. H. Marsh, G. T. Kennedy, and W. Sibbett, “Modulation of the second-order nonlinear tensor components in multiple-quantum-well structures,” J. Sel. Top. Quantum Electron. 4, 695–700 (1998). [CrossRef]
  82. A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs-AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000). [CrossRef]
  83. P. Scrutton, M. Sorel, D. C. Hutchings, J. S. Aitchison, and A. S. Helmy, “Characterizing bandgap gratings in GaAs:AlAs superlattice structures using interface phonons,” IEEE Photon. Technol. Lett. 19, 677–679 (2007). [CrossRef]
  84. K. Zeaiter, D. C. Hutchings, R. M. Gwilliam, K. Moutzouris, S. Venugopal Rao, and M. Ebrahimzadeh, “Quasi-phase-matched second-harmonic generation in a GaAs/AlAs superlattice waveguide by ion-implantation-induced intermixing,” Opt. Lett. 28, 911–913 (2003). [CrossRef]
  85. D. C. Hutchings, M. Sorel, K. Zeaiter, A. Zilkie, B. Leesti, A. S. Helmy, P. Smith, and S. Aitchison, “Quasi-phase-matched second harmonic generation with picosecond pulses in GaAs/AlAs superlattice waveguides,” in Nonlinear Guided Waves and Their Applications, Technical Digest on CD (Optical Society of America, 2004), paper TuA5.
  86. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef]
  87. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007). [CrossRef]
  88. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011). [CrossRef]
  89. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators.,” Opt. Express 16, 10596–10610 (2008). [CrossRef]
  90. T. Kippenberg, S. Spillane, and K. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004). [CrossRef]
  91. D. Ramirez, A. Rodriguez, H. Hashemi, J. Joannopoulos, M. Soljačić, and S. Johnson, “Degenerate four-wave mixing in triply resonant Kerr cavities,” Physical Review A 83, 033834(2011). [CrossRef]
  92. A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007). [CrossRef]
  93. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25, 554–556 (2000). [CrossRef]
  94. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photon. 2, 737–740 (2008). [CrossRef]
  95. Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, “Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling,” Opt. Express 16, 4621–4630 (2008). [CrossRef]
  96. G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993). [CrossRef]
  97. K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9 mm-long AlGaAs waveguides,” Opt. Lett. 35, 4093–4095 (2010). [CrossRef]
  98. D. C. Hutchings, S. J. Wagner, B. M. Holmes, U. Younis, A. S. Helmy, and J. S. Aitchison, “Type-II quasi phase matching in periodically intermixed semiconductor superlattice waveguides,” Opt. Lett. 35, 1299–1301 (2010). [CrossRef]
  99. S. J. Wagner, S. C. Kumar, O. Kokabee, B. M. Holmes, U. Younis, M. Ebrahim Zadeh, D. C. Hutchings, A. S. Helmy, and J. S. Aitchison, “Performance and limitations of quasi-phase matching semiconductor waveguides with picosecond pulses,” Proc. SPIE 7750, 77501K (2010). [CrossRef]
  100. B. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008). [CrossRef]
  101. U. Younis, B. M. Holmes, D. C. Hutchings, and J. S. Roberts, “Towards monolithic integration of nonlinear optical frequency conversion,” IEEE Photon. Technol. Lett. 22, 1358–1360 (2010). [CrossRef]
  102. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011). [CrossRef]
  103. L. Fu, V. G. Ta’eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D.-I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39, 1115–1131 (2007). [CrossRef]
  104. M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160  Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19, 1496–1498 (2007). [CrossRef]
  105. K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Extinction ratio improvement by pump-modulated four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” Opt. Express 13, 8900–8905 (2005). [CrossRef]
  106. A. Pasquazi, Y. Park, J. Azaña, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18, 7634–7641 (2010). [CrossRef]
  107. J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: technologies and applications in DWDM networks,” IEEE Communications Magazine 38, 86–92 (2000). [CrossRef]
  108. E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond control and measurement: lightwave electronics,” Science 317, 769–775 (2007). [CrossRef]
  109. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007). [CrossRef]
  110. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006). [CrossRef]
  111. A. Savchenkov, A. Matsko, D. Strekalov, M. Mohageg, V. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004). [CrossRef]
  112. L. Razzari, D. Duchesne, M. Ferrera, and R. Morandotti, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photon. 4, 41–45 (2009). [CrossRef]
  113. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities.,” Opt. Express 12, 4742–4750 (2004). [CrossRef]
  114. J. Levy, A. Gondarenko, M. Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4, 37–40 (2009). [CrossRef]
  115. C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, “Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber,” Opt. Lett. 29, 983–985 (2004). [CrossRef]
  116. M. E. Marhic, K. K.-Y. Wong, L. G. Kazovsky, and T.-E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett. 27, 1439–1441 (2002). [CrossRef]
  117. A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.-Z. Lo, J. Basak, B. Koch, H.-F. Liu, H. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I.-wei Hsieh, J. Heck, R. Beatty, H. Park, J. Bovington, S. Lee, H. Nguyen, H. Au, K. Nguyen, P. Merani, M. Hakami, and M. Paniccia, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDIWI5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited