OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 2 — Feb. 1, 2011
  • pp: 265–274

High-Q photonic crystal slab nanocavity with an asymmetric nanohole in the center for QED

Yanjun Song, Mingkai Liu, Yanbing Zhang, Xuehua Wang, and Chongjun Jin  »View Author Affiliations

JOSA B, Vol. 28, Issue 2, pp. 265-274 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1319 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new approach which allows one to insert a silica nanosphere with a single quantum dot into a high Q photonic crystal slab nanocavity with an asymmetric nanohole in the center. The high Q cavity is optimized by adjusting air holes around the L3-type cavity based on three-dimensional finite-difference time-domain simulation. High Q value of 48 700 in this asymmetric cavity is achieved. The performance of the cavity with an assumed silica sphere containing a single quantum dot in the nanohole is also discussed, in which the Q factor can reach 5 × 10 4 and modal volume V is 0.048 μm 3 ( 0.62 ( λ 0 / n ) 3 ). It is found that the electric field intensity in the nanohole is much stronger than the maximum electric field in the cavity without a nanohole. This makes it possible to locate the precise position of the quantum dot with respect to the cavity mode electric maximum. This system provides a good candidate for realizing a strong interaction between a quantum dot and cavity for the study of cavity quantum electrodynamics.

© 2011 Optical Society of America

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(140.3948) Lasers and laser optics : Microcavity devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Quantum Optics

Original Manuscript: July 6, 2010
Revised Manuscript: October 18, 2010
Manuscript Accepted: November 7, 2010
Published: January 13, 2011

Yanjun Song, Mingkai Liu, Yanbing Zhang, Xuehua Wang, and Chongjun Jin, "High-Q photonic crystal slab nanocavity with an asymmetric nanohole in the center for QED," J. Opt. Soc. Am. B 28, 265-274 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004). [CrossRef]
  4. Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009). [CrossRef]
  5. N.-V.-Q. Tran, S. Combri, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009). [CrossRef]
  6. M. Kaniber, A. Laucht, T. Hurlimann, M. Bichler, R. Meyer, M. C. Amann, and J. J. Finley, “Highly efficient single-photon emission from single quantum dots within a two-dimensional photonic band-gap,” Phys. Rev. B 77, 073312 (2008). [CrossRef]
  7. D. G. Gevaux, A. J. Bennett, R. M. Stevenson, A. J. Shields, P. Atkinson, J. Griffiths, D. Anderson, G. A. C. Jones, and D. A. Ritchie, “Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities,” Appl. Phys. Lett. 88, 131101 (2006). [CrossRef]
  8. S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005). [CrossRef]
  9. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449–458(2007). [CrossRef]
  10. C. Schneider, M. Strauss, T. Sunner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Hofling, and A. Forchel, “Lithographic alignment to site-controlled quantum dots for device integration,” Appl. Phys. Lett. 92, 183101 (2008). [CrossRef]
  11. J. Topol’ancik, S. Chakravarty, P. Bhattacharya, and S. Chakrabarti, “Electrically injected quantum-dot photonic crystal microcavity light sources,” Opt. Lett. 31, 232–234 (2006). [CrossRef] [PubMed]
  12. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London) 445, 896–899 (2007). [CrossRef]
  13. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005). [CrossRef] [PubMed]
  14. K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vuckovic, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009). [CrossRef]
  15. P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 92, 263101 (2008). [CrossRef]
  16. C. Schneider, A. Huggenberger, T. Su¨nner, T. Heindel, M. Strauss, S. Go¨pfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Ho¨fling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: Growth, properties and device integration,” Nanotechnology 20, 434012 (2009). [CrossRef] [PubMed]
  17. T. Sunner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Hofling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008). [CrossRef] [PubMed]
  18. D. Dalacu, M. E. Reimer, S. Frederick, D. Kun, J. Lapointe, P. J. Poole, G. C. Aers, R. L. Williams, W. R. McKinnon, M. Korkusinski, and P. Hawrylak, “Directed self-assembly of single quantum dots for telecommunication wavelength optical devices,” Laser Photonics Rev. 4, 283–299 (2009). [CrossRef]
  19. A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. D. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934(2001). [CrossRef]
  20. A. M. Adawi and D. G. Lidzey, “A design for an optical-nanocavity optimized for use with surface-bound light-emitting materials,” New J. Phys. 10, 065011 (2008). [CrossRef]
  21. M. Darbandi, W. G. Lu, J. Y. Fang, and T. Nann, “Silica encapsulation of hydrophobically ligated PbSe nanocrystals,” Langmuir 22, 4371–4375 (2006). [CrossRef] [PubMed]
  22. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001). [CrossRef]
  23. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003). [CrossRef]
  24. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214(2005). [CrossRef] [PubMed]
  25. Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of similar to 10(9),” J. Lightwave Technol. 26, 1532–1539 (2008). [CrossRef]
  26. Z. Y. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12, 3988–3995 (2004). [CrossRef] [PubMed]
  27. M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity,” Opt. Express 18, 8144–8150 (2010). [CrossRef] [PubMed]
  28. I. RSoft Design Group, “Creating Uniform and Non-Uniform Grids,” in RSOFT CAD 8.2 user guide (RSoft Design Group Inc., 2010), pp. 115–120.
  29. A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited