OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 2 — Feb. 1, 2011
  • pp: 336–341

Numerical optimization of high-Q-factor photonic crystal microcavities with a graded air lattice

A. Benmerkhi, M. Bouchemat, T. Bouchemat, and N. Paraire  »View Author Affiliations


JOSA B, Vol. 28, Issue 2, pp. 336-341 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000336


View Full Text Article

Enhanced HTML    Acrobat PDF (1086 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present here a numerical study of an optical Fabry-Perot filter made within triangular symmetry 2D photonic crystal by using the finite difference time domain method. Devices that are structure based on microcavities have been studied using direct input and output coupling through channel waveguides including size-graded holes on both sides of the microcavitiy. From a transmission calculation, a very high-Q-factor value has been achieved at λ = 1.50086 μm .

© 2011 Optical Society of America

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optical Devices

History
Original Manuscript: June 28, 2010
Revised Manuscript: September 27, 2010
Manuscript Accepted: November 12, 2010
Published: February 1, 2011

Citation
A. Benmerkhi, M. Bouchemat, T. Bouchemat, and N. Paraire, "Numerical optimization of high-Q-factor photonic crystal microcavities with a graded air lattice," J. Opt. Soc. Am. B 28, 336-341 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-2-336


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light Princeton (University Press, 1995), pp. 94–104.
  2. C. M. Soukoulis, “3D photonic crystals: from microwaves to optical frequencies in photonic crystals and light localization,” in Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer, 2001), pp. 25–40.
  3. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannapoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996). [CrossRef] [PubMed]
  4. M. Bayindir, B. Temelkuran, and E. Ozbay, “Propagation of photons by hopping: A waveguiding mechanism through localized coupled-cavities in three-dimensional photonic crystals,” Phys. Rev. B 61, R11855–R11858 (2000). [CrossRef]
  5. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000). [CrossRef]
  6. O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1824 (1999). [CrossRef] [PubMed]
  7. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001). [CrossRef] [PubMed]
  8. J. Yonekura, M. Ikeda, and T. Baba, “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,” J. Lightwave Technol. 17, 1500–1508(1999). [CrossRef]
  9. M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic crystal based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000). [CrossRef]
  10. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1479(1998). [CrossRef] [PubMed]
  11. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999). [CrossRef]
  12. A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and A. E. Akmansoy, “Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,” Appl. Phys. Lett. 75, 1625–1627 (1999). [CrossRef]
  13. E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band gap structure,” Phys. Rev. B 51, 13961–13965 (1995). [CrossRef]
  14. S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, “Photonic band gap microcavity in three dimensions,” Phys. Rev. B 59, R15579 (1999) Rapid Communications. [CrossRef]
  15. D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, “Photonic band-structure and defects in one and 2 dimensions,” J. Opt. Soc. Am. B 10, 314–321 (1993). [CrossRef]
  16. O. J. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082 (1999). [CrossRef]
  17. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143–145 (1997). [CrossRef]
  18. X. Wang, Z. Xu, and N. Lu, “Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,” Opt. Commun. (2007). [CrossRef]
  19. J. Romero-Vivas, D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres, “Resonant add-drop filter based on a photonic quasicrystal,” Opt. Express 13, 826–835 (2005). [CrossRef] [PubMed]
  20. Y. Desieres, “Conception et études optiques de composants micro photoniques sur matériaux III-V à base de structures à bande interdite de photon,” Ph.D. thesis No. 01-0081, National Institute of Applied Sciences in Lyon (2001).
  21. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light Princeton(University Press, 2007).
  22. The FDTD simulations were carried out with Fullwave commercial software by RSoft Design Group, version 6.1, license 16847214.
  23. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joanopolous, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett. 26, 1903–1905 (2001). [CrossRef]
  24. K. Srinivasan, P. E. Barclay, and O. Painter, “Fabrication-tolerant high quality factor photonic crystal microcavities,” Opt. Express 12, 1458–1463 (2004). [CrossRef] [PubMed]
  25. T. Xu, N. Zhu, M. Y-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express 18, 5420–5425 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited