OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 3 — Mar. 1, 2011
  • pp: 433–444

Cavity dumping versus stationary output coupling in repetitively Q-switched solid-state lasers

Mikhail Grishin  »View Author Affiliations


JOSA B, Vol. 28, Issue 3, pp. 433-444 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000433


View Full Text Article

Enhanced HTML    Acrobat PDF (1360 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A comparative theoretical analysis of continuously pumped actively Q-switched solid-state lasers differing in output coupling methods (cavity dumping versus a partially transmitting cavity mirror) is presented. Basic performance characteristics of the optimally coupled laser for periodic steady-state operation are expressed analytically. The instability effects are shown to fundamentally inhere in cavity dumping in contrast to ordinary Q-switching. The space of system parameters permitting stable operation and the maximum average power attainable as a train of regular energy pulses are determined numerically and verified experimentally. Cavity dumping is demonstrated to be the coupling method allowing Q-switched lasers to reach extremely high repetition rates.

© 2011 Optical Society of America

OCIS Codes
(140.1540) Lasers and laser optics : Chaos
(140.3430) Lasers and laser optics : Laser theory
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 30, 2010
Manuscript Accepted: December 6, 2010
Published: February 17, 2011

Citation
Mikhail Grishin, "Cavity dumping versus stationary output coupling in repetitively Q-switched solid-state lasers," J. Opt. Soc. Am. B 28, 433-444 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-3-433


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. McDonagh, R. Wallenstein, and R. Knappe, “47W, 6ns constant pulse duration, high-repetition-rate cavity-dumped Q-switched TEM00Nd:YVO oscillator,” Opt. Lett. 31, 3303–3305(2006). [CrossRef] [PubMed]
  2. A. E. Siegman, Lasers (University Science, 1986).
  3. W. Koechner, Solid-State Laser Engineering (Springer, 1996).
  4. J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989). [CrossRef]
  5. J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991). [CrossRef]
  6. A. Hofer, Th. Graf, W. Lüthy, and H. P. Weber, “Fully analytical simulation of Q-switched lasers,” Laser Phys. Lett. 1, 282–284(2004). [CrossRef]
  7. R. B. Chesler, M. A. Karr, and J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAlG lasers,” Proc. IEEE 58, 1899–1913 (1970). [CrossRef]
  8. J. Liu, B. Ozugus, J. Erhard, A. Ding, H. Weber, and X. Meng, “Diode-pumped cw and Q-switched Nd:GdVO4 laser operating at 1.34µm,” Opt. Quantum Electron. 35, 811–824 (2003). [CrossRef]
  9. D. B. Coyle, D. V. Guarra, and R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995). [CrossRef]
  10. L. A. Eyres, J. J. Morehead, J. Gregg, D. J. Richard, and W. Grossman, “Advances in high-power harmonic generation: Q-switched lasers with electronically adjustable pulse width,” Proc. SPIE 6100, 349–358 (2006).
  11. J. Dörring, A. Killi, U. Morgner, A. Lang, M. Lederer, and D. Kopf, “Period doubling and deterministic chaos in continuously pumped regenerative amplifiers,” Opt. Express 12, 1759–1768(2004). [CrossRef] [PubMed]
  12. J. Murray and W. Lowdermilk, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 3548–3555 (1980). [CrossRef]
  13. M. Grishin, V. Gulbinas, and A. Michailovas, “Bifurcation suppression for stability improvement in Nd:YVO4 regenerative amplifier,” Opt. Express 17, 15700–15708 (2009). [CrossRef] [PubMed]
  14. O. Svelto, Principles of Lasers (Plenum, 1998).
  15. K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems (Springer, 1996).
  16. M. Grishin, V. Gulbinas, and A. Michailovas, “Dynamics of high repetition rate regenerative amplifiers,” Opt. Express 15, 9434–9443 (2007). [CrossRef] [PubMed]
  17. R. D. Peterson, H. P. Jenssen, and A. Cassanho, “Investigation of the spectroscopic properties of Nd:YVO4,” in Trends in Optics and Photonics Series (TOPS), Vol.  68, Advanced Solid-State Lasers, M.E.Fermann and L.R.Marshall, eds. (2002), pp. 294–298.
  18. A. Ahlborn and U. Parlitz, “Laser stabilization with multiple-delay feedback control,” Opt. Lett. 31, 465–467 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited