OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 602–607

Tailored leaky plasmon waves from a subwavelength aperture for optical particle trapping on a chip

M. S. Muradoglu, Tuck Wah Ng, Adrian Neild, and Ian Gralinski  »View Author Affiliations

JOSA B, Vol. 28, Issue 4, pp. 602-607 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (716 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical forces available on a chip that possess features of strong trapping at the subwavelength scale, in a coplanar geometry, and at specific and selective locations portend many useful applications. We demonstrate here a two-pronged approach to accomplish this. First, the plasmon fields emanating from a subwavelength aperture are manipulated so that they leak maximally to the sides on a surface through the use of tailored corrugations. Second, the location of secondary corrugation at some distance permits reflection of these leaky waves, which, with the coherence property of light used, generate optical standing wave fields capable of strong optical trapping. The linear optical forces generated with this scheme are presented here.

© 2011 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(240.6680) Optics at surfaces : Surface plasmons
(240.3990) Optics at surfaces : Micro-optical devices

ToC Category:
Atomic and Molecular Physics

Original Manuscript: September 21, 2010
Revised Manuscript: January 4, 2011
Manuscript Accepted: January 12, 2011
Published: March 2, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

M. S. Muradoglu, Tuck Wah Ng, Adrian Neild, and Ian Gralinski, "Tailored leaky plasmon waves from a subwavelength aperture for optical particle trapping on a chip," J. Opt. Soc. Am. B 28, 602-607 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  2. K. Dholakia and W. M. Lee, “Optical trapping takes shape: the use of structured light fields,” Adv. Atom. Mol. Opt. Phys. 56, 261-337 (2008).
  3. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480-484 (2008). [CrossRef] [PubMed]
  4. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83, 4534-4537 (1999). [CrossRef]
  5. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88, 123601 (2002). [CrossRef] [PubMed]
  6. T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia , “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006). [CrossRef]
  7. P. Zemánek, A. Jonáš, and M. Liška, “Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave,” J. Opt. Soc. Am. A 19, 1025-1034 (2002). [CrossRef]
  8. A. Neild, T. W. Ng, and W. M. S. Yii, “Optical sorting of dielectric Rayleigh spherical particles with scattering and standing waves,” Opt. Express 17, 5321-5329 (2009). [CrossRef] [PubMed]
  9. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 2, 365-370 (2008). [CrossRef]
  10. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008). [CrossRef] [PubMed]
  11. Z. Fang, F. Lin, S. Huang, W. Song, and X. Zhu, “Focusing surface plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94, 063306 (2009). [CrossRef]
  12. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002). [CrossRef] [PubMed]
  13. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004). [CrossRef] [PubMed]
  14. H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express 17, 2334-2340 (2009). [CrossRef] [PubMed]
  15. Y. Gravel and Y. Sheng, “Rigorous solution for the transient surface plasmon polariton launched by subwavelength slit scattering,” Opt. Express 16, 21903-21913 (2008). [CrossRef] [PubMed]
  16. D. R. Jackson, J. Chen, R. Qiang, F. Capolino, and A. A. Oliner, “The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture,” Opt. Express 16, 21271-21281 (2008). [CrossRef] [PubMed]
  17. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407(2006). [CrossRef]
  18. Y. Liu, H. Shi, C. Wang, C. Du, and X. Luo, “Multiple directional beaming effect of metallic subwavelength slit surrounded by periodically corrugated grooves,” Opt. Express 16, 4487-4493(2008). [CrossRef] [PubMed]
  19. F. Wang, M. Xiao, K. Sun, and Q.-H. Wei, “Generation of radially and azimuthally polarized light by optical transmission through concentric circular nanoslits in Ag films,” Opt. Express 18, 63-71 (2010). [CrossRef] [PubMed]
  20. P. Drude, “Zur elektronentheorie der metalle,” Ann. Phys. 306, 566-613 (1900). [CrossRef]
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  22. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos. Trans. R. Soc. A 362, 719-737 (2004). [CrossRef]
  23. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science, 2007), pp. 42-52.
  24. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687-702 (2010). [CrossRef]
  25. T. W. Ng, A. Neild, and P. Heeraman, “Continuous and fast sorting of Brownian particles,” Opt. Lett. 33, 584-586 (2008). [CrossRef] [PubMed]
  26. A. Neild, T. W. Ng, and T. Woods, “Optimizing photophoresis and asymmetric force fields for grading of Brownian particles,” Appl. Opt. 48, 6820-6826 (2009). [CrossRef] [PubMed]
  27. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297-301 (2000). [CrossRef]
  28. J. J. Miret and C. J. Zapata-Rodríguez, “Diffraction-free propagation of subwavelength light beams in layered media,” J. Opt. Soc. Am. B 27, 1435-1445 (2010). [CrossRef]
  29. Z. Zhang and S. C. Glotzer, “Self-assembly of patchy particles,” Nano Lett. 4, 1407-1413 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPEG (2408 KB)     
» Media 2: MPEG (2299 KB)     
» Media 3: MPEG (1605 KB)     
» Media 4: MPEG (1471 KB)     
» Media 5: MPEG (2801 KB)     
» Media 6: MPEG (2807 KB)     
» Media 7: MPEG (2830 KB)     
» Media 8: MPEG (2964 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited